Research Reports
In collaboration with Swerea KIMAB, manufacturers/contractors and building owners, the Swedish Cement and Concrete Research Institute is conducting an SBUF project concerning parking decks. The purpose of the project is to develop a basis for how a parking deck should be designed with regard to floor coverings on concrete. The resistance to sudded tires is here of great importance. This report focuses on relevant methodogoy for simulating the kind of studded tire traffic, that occurs on parking decks in Nordic countries.
Author: Ylva Edwards
In collaboration with SP Technical Research Institute of Sweden, manufacturers/contractors and plant owners, the Swedish Cement and Concrete Research institute is conducting a Vinnova project concerning concrete protection in biological treatment plants.- The purpose of the project is to develop av basis for how biological treatments plants should be designed with regard to protection coverings on concrete.
Author: Ylva Edwards
Local grid owners can be proactive by mapping the capacity and potential for different technics in their grids, and by communicating their knowledge to all the different actors that are planning to use the grid. They thereby maximize the potential of coordinating grid development and capacity plans with the plans of other actors. If the local grid owners are reactive, there is a risk of delaying the development towards a fossil free society if other actors do not make realistic plans of connecting to the grid.
Author: Lennart Kjellman
En vanligt förekommande bullerdämpande åtgärd för flerbostadshus är att man utrustar balkonger med akustiskt täta räcken i kombination med absorbenter i balkongtak. Om högre ljuddämpning behövs används även delvis inglasning (högst 75%) utöver de tidigare åtgärderna. Vad den egentliga ljuddämpande effekten är när man tillämpar dessa åtgärder är inte självklar. I dagsläget används schablonvärden som tagits fram genom mätningar och av erfarenhet. För att skapa ett gediget underlag och öka säkerheten vid beslut om olika balkongåtgärder för olika situationer föreslås följande forskningsprojekt: Genom numerisk analys undersöka vilka balkongåtgärder ger tillräckligt bullerdämpning för att innehålla gällande riktvärden för trafikbuller. Balkongers ljuddämpande effekt har undersökts av flera forskare där man fokuserat på hur de olika balkongelementen i kombination med absorbenter kan reducera ljudnivån inne i balkongen och vid fasaden. Dock saknas forskning kring hur delvis inglasning ytterligare kan öka den ljuddämpande effekten. Detta forskningsprojekt ämnar fylla den luckan genom att använda 3D BEM beräkningar för bandbredden som är relevant för vägtrafik. Metoden kan med hög noggrannhet beräkna diffraktion av balkongräcken även för låga frekvenser för en förhållandevis liten volym som balkonger. Ofta används strålgångsmetoder där noggrannheten är hög för högre frekvenser, men är mindre tillförlitlig för låga frekvenser. En annan lucka i tidigare undersökningar är att fler infallsvinklar för ljudkällan kommer att undersökas. Vanligtvis förenklas problemet genom att ljudkällan (vägen) går parallellt med fasaden. I detta forskningsprojekt kommer utöver ett normalfall där ljudkällan går parallellt med fasad även fall där vägen går ortogonalt med fasad och vid 45 graders vinkel. Detta kommer påverka optimal mängd och placering av inglasning av balkongen vilket kommer utredas och redovisas.
Author: Kaj Piippo
Dagvatten kan hanteras på ett hållbart sätt genom att använda grön infrastruktur. Den gröna infrastrukturen är multifunktionell och reducerar problemen med dagvatten samtidigt som den bidrar med biologisk mångfald, upplevelsevärden, rekreation och bättre livskvalitet i våra städer. Att anlägga gröna ytor på eller intill byggnader är ett sätt att kunna bygga tätt med bibehållna gröna kvaliteter. Generellt har man fokuserat på att anlägga gröna miljöer på bostadshus, kontor och kommunala verksamheter som skolor och förskolor. Det finns lite erfarenheter av hur dessa gröna miljöer kan inkluderas i industriområden. Detta projekt är ett samarbetsprojekt mellan avfallsbolaget NSR och Sveriges lantbruksuniversitet SLU. Projektet fokuserar på hur man kan arbeta med hållbar dagvattenhantering i en industriell miljö genom smart användning av vegetation, teknisk installation och substrat. Målet är att undersöka hur olika installationer kan reducera mängden dagvatten som genereras på en avfallsanläggning med stora hårdgjorda ytor. Själva dagvattnet är problematiskt på anläggningen eftersom det smutsas ner av verksamheterna på platsen och måste renas innan det leds vidare till recipient. Projektet kommer hantera 3 arbetspaket. Det första handlar om hur växternas livsmiljö kan optimeras för att reducera avrinnande vatten. Arbetspaketet kommer undersöka hur växternas effektivitet att hantera dagvatten påverkas av de alternerande blöta och torra perioderna som uppstår i de tunna växtbäddarna och hur smart bevattningsteknik kan användas för att reducera mängden avrinnande vatten. Arbetspaket 2 kommer att undersöka hur vegetationssystem kan byggas i form av växtval och mångfald upp för att maximera avdunstning och resiliens. Arbetspaket 3 tittar på potential för att använda återvunnet material som finns tillgängligt på avfallsanläggning till att bygga upp växtbäddar.
Author: Tobias Emilsson
Urbanization stimulates the wide use of underground space for fast transportation in the cities. The numbers of underground road tunnels, subway tunnels and other railway tunnels are continuously increasing. Meanwhile, complexities of the infrastructure are also increasing, e.g. a roundabout in a tunnel, a metro transfer station connecting more and more lines etc. Despite the relatively low risk for large fires in tunnels, the increasing number of underground tunnels implies that more fire incidents may occur, unless more effective measures have been taken to reduce it. This has forced the authority to reconsider the safety level of the underground tunnels and rethink the use of water-based FFFS in underground tunnels. It has become one of the key active fire protection measures applied in tunnels, especially in important underground urban tunnels. The use of a FFFS in a tunnel has the potential to limit the design fire size, cooling smoke, aid smoke control, prevent fire spread to other vehicles and protecting tunnel users and structure. The reduced fire size and the gas cooling effect of the water sprays can reduce the critical velocity that is required to prevent smoke reverse flow in a tunnel fire. This indicates that the capacity of the designed ventilation system can be reduced accordingly. However, the researches on the smoke control issue in tunnels with FFFS is rather limited and there exists a hug knowledge gap. The objective of this project is to systematically investigate how to control the smoke flows in tunnels with water-based fixed fire fighting systems (FFFS). The work will be conducted based on a large amount of data from model scale and full scale tests that have been carried out by RISE, and by use of advanced Computational Fluid Dynamics (CFD) modelling.
Author: Ying Zhen Li
A total of 46 tests were carried out in a 1:15 model scale tunnel with various slopes to investigate the influence of downhill and uphill slopes on smoke control in longitudinally ventilated tunnels. The experimental study considered various fire sizes, from small to large fires, and various slopes, from -20 % (uphill) to 20 % (downhill). Further, a series of simulations were conducted to verify the findings in full scale tunnels. A positive slope refers to a tunnel with longitudinal flow blown towards the downhill side and vice versa. T
Author: Ying Zhen Li
The aim of this research project was to generate novel and sustainable polymeric materials from renewable resource through the use of innovative synthetic biology approaches. The abundant in forestry waste-streams, into novel and versatile monomers amenable for polymerization. To reach this goal, artificial biochemical pathways founded on oxidoreductase biocatalysts were designed to enable the prerequisite biotransformations. Capitalizing on synthetic biology approaches and enzyme design, the project has successfully generated two novel activated monomeric building blocks from biomass: an a-pinene-based diol and a terpene-based cyclic ester. Starting from the diol, unprecedented biomaterials were manufactured in laboratory scale by selective decoration of one of the introduced functional hydroxyl group, followed by polymerization. For the cyclic ester, green oligomers with lower molecular weight have been generated up to now. Interestingly, incorporating cyclic structures of valorized terpene-based monomers into biopolymers resulated in favorable material properties, including low polydispersity index and beneficial glass transition temperature. Thus, the project's multidisciplinary strategy has a high potential to generate novel and renewable biomaterials from biomass. Overcoming current challenges, including optimization of polymerization reaction conditions and low activity of biocatalyst by enzyme engineering, would unleash the full potential of the project to contribute to a circlar bioeconomy in the future.
Author: Per-Olof Syrén
Gears and bearings are major load carrying machine elements in the transportation, energy production and manufacturing industries. The life of the elements is primarily limited by rolling contact fatigue. The transportation and energy industries both stand in front of large challenges in the upcoming decades. The transportation industry must reduce its environmental impact with 50% following the Paris agreement to limit global warming to 2 °C while at the same time doubled transportation volumes are forecasted. The solution is a combination of energy efficiency and shift to electric power. Both require increased power density through the transmission system with higher loads on gears and bearing. Following the phase out of fossil and nuclear fuels for electricity production, the energy industry must change to renewable energy sources. Wind and wave energy are two such sources which will become increasingly important. These are however inherently subjected to transient loads with constant risk for overloads on gears and bearings. For gears the costs of improved surface finish with better lubrication conditions will be necessary for the required energy efficiency, higher loads and to avoid surface initiated rolling contact fatigue. When surface initiated rolling contact fatigue is avoided, then the damage initiation point move below the surface and another physical mechanism becomes active and dominating, resulting in sub-surface initiated rolling contact fatigue. The purpose of this project is to find and describe the physical mechanism for sub-surface initiated rolling contact fatigue. Based on the new understanding the goal is to propose an improved design method against sub-surface initiated rolling contact fatigue in contact machine elements such as gears, bearings and cams. The damage hypothesis includes the understanding that in transportation and renewable energy applications the load includes variations that for short intervals may overload the components.
Author: Bo Alfredsson
The field of photovoltaics (PVs) holds the promise of making our buildings ‘‘smart’’ and our portable devices “independent”, if effective energy sources can be developed for use in ambient indoor conditions. Dye-sensitized solar cells (DSC) are particularly suited, because of their ability to maintain photovoltage even under dim light condition, outperforming conventional silicon and even GaAs based photovoltaics in power conversion efficiency (PCE). We recently introduced a new DSC design with Cu complexes as a redox relay, which is capable of successfully regenerating dyes at only 0.1 eV. Strikingly, under 1000 lux indoor illumination the PCE is 28.9 %. However, the thermal and chemical stability of DSCs is limited due to the use of liquid electrolytes. In a separate work we discovered that copper coordination complexes can act as efficient hole transport materials (HTMs) in dye-sensitized solar cells. The aim of this project is 1) to introduce a new hole transport material for indoor solid state DSCs (ssDSCs) based on transition metal coordination complexes and 2) to investigate fundamental, mechanistic aspects of solar cells under low/indoor light conditions and 3) to deliver an efficient indoor solar cell system based on ssDSCs using panchromatic sensitizers in conjunction with new copper coordination complexes as HTM. We aim to achieve high efficiency and stability under typical indoor conditions at 200 lux/1000lux with resource efficient materials, to ascertain autonomous operation of a range of electronic devices in an indoor environment. • Introduction of solid state dye-sensitized solar cells (ssDSC) specifically for indoor light conditions, based on copper coordination complexes as HTM. • Generation of fundamental and structural understanding of implications on ssDSC under low light conditions. • Performing stability studies with ambient light ssDSC in conjunction with low power devices (i.e. wireless network sensors).
Author: Marina Freitag
The PhD-project “Separation of heavy metals in municipal wastewater“ (SMET) is carried out by Ida Sylwan, PhD-student at Mälardalen University, during the period 2017-2021. The aim of the project is to enhance the quality of sludge from Swedish municipal wastewater treatment plants, and enable long-term reuse of nutrients in agriculture. The current application will cover costs for equipment, consumables and analysis associated with experimental work conducted during 2019-2020.
Author: Ida Sylwan
The objective of the project was to develop a novel mechanical process for the fractionation of the multi-component blend of textile fibrous waste, to enable the value-added recovery of high-value polymers from such wastes; we are very thankful to Åforsk for the financial support of the project. The textile sector uses a very large quantity of raw materials and produces a substantial amount of waste. This is partly because, currently, only a small amount of wearable textiles is recycled. Most of these textiles are landfilled or incinerated, with a high negative environmental impact and large quantities of valuable resources lost. Most of the waste fabrics are currently disposed in landfills, costing on average more than $30 million on disposal costs alone, which does not account for the cost of handling and shipping. The municipal textile consists of approximately: PET polyester 45%, Cotton 41%, Polyamide PA6 5%, Wool & Silk 2% and other minor components e.g. spandex, polypropylene etc at less than 1%. Textile waste treatment strategies include reducing, reusing, recycling and energy recovery all with a focus on doing less harm.
Author: Nawar KADI
The Swedish forest sector can be represented by a small number of forest companies and forest owners’ associations. In order to conduct applied research and strive for innovations with high practical use, it is of importance that any assumptions made regarding incentives of these companies or associations are well-founded. The aim of this project was to gather insights on strategic and operational wood supply chain planning, including decision-making and use of decision support tools. By keeping a helicopter view, a majority of the forest sector was covered in the data collection and analysis despite a limited project budget. Data on annual transported timber and pulpwood volumes were compiled for 10-15 of the largest forest companies or forest owners’ associations in Sweden, and interviews were held with their supply chain managers. Data analyses were then carried out to find differences between clusters of companies or associations that could be essential in, e.g., the design of new decision-support tools.
Author: Lovisa Engberg Sundström
Övergången från ett fossilbaserat till ett hållbart samhälle kräver ett effektivt nyttjande av material och energi, där en väl fungerande återvinning av näringsämnen är en viktig pusselbit. Detta projekt adresserar några av våra mest angelägna samhällsutmaningar: övergång till helt förnyelsebar energi, materialcirkularitet och en hållbar återföring av näringsämnen. Återföring av samhälleliga restströmmar, som t.ex. avloppsslam och/eller biobaserade industriella slammer, innebär miljö- och/eller hälsorisker i form av tungmetaller, sjukdomsframkallande organismer, hormoner, och antibiotika. Vid förbränning av restströmmar finns möjlighet att tillgodogöra sig materialets energiinnehåll, samtidigt som eventuella oönskade organiska föreningar destrueras. De näringsämnen som kvarstår i askan kan därefter samtidigt extraheras och nyttjas för återföring. I detta projekt kommer vi att samförbränna två fosforrika restströmmar med lämplig restfraktion från skog- eller jordbruk. Olika bränslen och processer ger olika egenskaper hos askan och det kan skilja åt vilka ämnen som hamnar i vilka askfraktioner. Målet med projektet är att länka samman kemiska och fysiska egenskaper relevanta för näringsämnesåterföring hos askan. Askfraktioner kommer att karakteriseras med avseende på bland annat kemisk sammansättning, samt ge detaljerad kunskap om porositet och inre mikrostruktur genom röntgenbaserad mikrotomografi och bildanalys. Genom att utforska vilka fosfater som bildas och hur dessa sitter inbundna i askan, i kombination med morfologi och porositet, kan förståelsen ökas för hur bränsleblandningar utformas för att ge en aska som är lämplig för näringsåterföring. Askans tungmetallinnehåll är ofta begränsande för huruvida, eller i vilka mängder, den kan spridas. Förekomsten av tungmetaller i askan kommer därför att analyseras och utvärderas gentemot gällande gränsvärden för återföring. Projektet berör flera av stiftelsens kärnområden, som energi, miljö och hållbarhet.
Author: Anna Strandberg
Waste recycling business is propelling globally, and the size of its global market is over USD 1 trillion as recorded in 2019. Along with the growth of recycling business, number of incidents of waste and biofuel fires are also increasing. These incidents are source of great concern for waste management and biofuel sector, and public, as have serious socio-economic, environmental, and occupational health and safety consequences. Swedish EPA, MSB and several other authorities have highlighted the need for increased knowledge about fire risks in connection with waste and biofuel storage and for devising methods and procedures for reducing the risk of spread of spontaneous fires. In this project, it is planned to employ geophysical techniques e.g. DCIP (Direct Current resistivity and time-domain Induced Polarization) tomography, multi-frequency Stångslingram and IR thermal imagery for the early detection of smoldering fires. The novelty of the project is that the geophysical techniques were never employed for the early detection of smoldering fires, hitherto. The proposed project has strong potential to transform the safety standards and working environment of the whole waste recycling chain and will harness benefits for waste management sector and beyond both at national and international level.
Author: Muhammad Asim Ibrahim
This report provides an overview of the research financed by grant ref. nr 21-148 with the project title Business model innovation in the Swedish energy sector – enabling a circular economy. A circular economy is a novel production model that is based on circular flows of material and energy, thereby reducing waste generation, and minimizing the extraction of finite resources. This research was initiated due to the need to identify challenges associated with developing and implementing circular business models in the Swedish energy sector. The study aims to identify obstacles and coping strategies associated with the development of circular business models in the Swedish energy sector, and to explore how actors within the sector work with circular business model innovation. Due to the complex character of business model innovation and the rather recent emergence of the field of circular business models, the study was designed as an exploratory qualitative study. In total, 36 respondents were interviewed, and these respondents had mostly senior roles in their organization or were prominent advocates for aspects linked to their professional area within the Swedish energy sector. The interviews allowed for a comprehensive overview of how circularity and circular business models are developed within multiple subsets of the Swedish energy sector.
Author: Jon Williamsson
The internal surfaces of thermal power plants become covered with deposits from the combusted material (fuel) as well as a gradual build-up of various corrosion products. The formed layers are highly complex in composition and structure, varying depending on the alloy, temperature, type of fuel, etc. The elements present in the deposited layers affect the corrosion processes, and thereby the service lifetime of the boilers. In order to better understand these corrosion processes, compositional depth profiling (CDP) of the layers is very valuable analytical information. A radio frequency (RF) Glow Discharge Optical Emission Spectroscopy (GD-OES) method has been developed for quantitative depth profile analysis of these surface deposits. Some of the major elements of interest are Cl, S, Ca, Na and K, and there are no commercially available solid reference materials (RM) with mass fractions in the range found in these materials. It was therefore necessary to produce dedicated RM’s for calibration. The method devised within the project was to spray salt solutions onto steel substrates and subsequently dry these, producing coatings of well-known composition for calibration.
Author: Arne Bengtson
ZnO nanowires (NWs) are currently considered among the most attractive material systems for gas and chemical sensing. Performance of these sensors is, however, largely affected by intrinsic defects and impurities present in the material and conditions of the NW surface. In this project we explore deliberate defect and surface engineering to enhance performance and functionality of ZnO-based nanosensors. The specific objectives of the project are: (i) to evaluate effects of specific defects and impurities on electrical and optical properties of ZnO NWs by introducing them in a controlled manner; (ii) based on the gained knowledge, to enhance sensitivity and achieve desired gas selectivity by utilizing defect engineering and plasmonic effects.
Author: Jan Eric Stahr
Clean water is a prerequisite for the life of humans, animals and plants on earth, and water purification is an important issue all over the world. Toxic heavy metals are present in increased amounts in the natural environment due to pollutions, and this may have devastating consequences for human health. Metals are elements that are preserved in the natural environment and accumulates with time. The amounts are therefore increasing even though stricter legislations are reducing the emissions of toxic metals. In order to reduce the amounts of heavy metals, old sins must eventually be dealt with in an appropriate way. However, the problem may often be that the metals are toxic even in very low amount, and there is a lack efficient techniques to reduce the amounts to harmless levels. The purpose of the present study was to prepare a filter for water purification with respect to toxic metals. The filter is based on a porous material with a large inner surface available for modification to increase the interactions with metal ions. Native cellulose was chosen as the filter material, and a chelating surfactant was added to capture the metal ions. The filter was prepared by first dissolving the cellulose, then adding the chelating surfactant followed by vigorous mixing to create a foam, which was eventually regenerated to a solid filter. The process was performed solely in water-based solvents and resulted in a durable filter with chelating properties.
Author: Ida Svanedal
Stringent environmental goals are beginning to render vapor compression technologies insufficient: these technologies are the basis for cooling applications ranging from refrigerators to ultra-large cloud server farms used by e.g. Google, Amazon, Facebook and Spotify. Magnetic (solid-state) refrigeration, based on the magnetocaloric effect (MCE), is receiving increased attention as a alternative to vapor compression cooling. However, efficiencies achieved by sate-of-the art magnetocaloric materials are far from the theoretical Carnot maximum efficiency of 50-60%. It is believed that the true potential of this technology can be unlocked when the magnetocaloric material is fabricated as a thin film, where nanoscale size effects can amplify the MCE. This would be transformational, opening up a diverse set of new energy saving applications, e.g. solid.state cooling of microelectronic devices.
Author: Kostas Sarakinos
Many of our most commonly used commodity chemicals contain chlorine in some form. These chemicals are often hazardous and corrosive which makes proper material selection a key issue. Finding a safe, reliable and at the same time cost-effective solution is a priority for industries such as chemical plants, pulp and paper mills and water treatment plants. In the presented project, some common, industrial chlorine.containing chemicals have been studied from a corrosion point of view. These chlorine environments are extremely difficult for most metallic materials and common materials choices are instead the plymeric materials PVC or CPVC. However, the deeper understanding of the corrosion process is lacking and due to environmental adaptation of the materials' formulations previously collected corrosion data may be out of date. The goal for this project is therefore to better understand the corrosion process of PVC and CPVC materials in chlorine environments. The results to support users and suppliers of process equipment with a better fundamental understanding about the behaviour of these materials in chlorine environments. Since the welds often are the weakest point of any piping system, the project has also studied the effect of different welding techniques (e.g. treatment of the materials by heat or solvents with the purpose of joining pipes together) on the corrosion resistance of PVC and CPVC materials in chlorine service. The findings are aimed to be of help for users at e.g. chemical plants, pulp and paper mills and within water treatment to make better material choices, better service life predictions and to a safer working environment.
Author: Karin Jacobson
The interfacial mechanisms that regulate the lipase-mediated digestion process was investigated using QCM-D in conjunction with TIRF microscopy. Specific focus was attributed to probing the role of Ca2+ ions on the lipid digestion mechanism. Through biophysical analysis, ti was established that Ca2+ indirectly altered the accessibility of the lipid-in-water interface by interacting with anionic phospholipid that stabilize the interface. In doing so, this increased the surface area and bioaccessibility for lipase to adsorb and digest the lipids at the interface. The impact that C2+ had on the subsequent drug release during lipid digestion was studied by encapsulating the poorly water-soluble and autofluorescent drug, felodipine, into the lipid nanoparticles. It was established that Ca2+ not only controlled the release of lipid digestion, but also controlled the subsequent release of encapsulated drug molecules. The insights derived from these studies have been essential for improving the understanding of the lipase-mediated hydrolysis process and are also integral to improving in vitro lipolysis techniques for lipid-based drug formulations. Additionally, we have demonstrated that TIRF microscopy can be harnessed to study lipi:drug interactions during simuated lipid digestion studies, to investigate of the drug preferentially solubilizes within the triglycerides of the digestion products - a fundamentally important consideration when formulating drugs within lipid systems. This work is currently being prepared in manuscript form and will be submitted in the fist half 0 2020.
Author: Hanna Gustafsson
The current project was motivated by the urgent necessity to develop fast and real-time sensing platform based on epitaxial graphene on SiC for detection of toxic heavy metals (especially Cd, Hg and Pb) in water. This is since heavy metals belong to one of the most dangerous categories of persistent toxins with high bioaccumulation ability. In the frames of the project, two different strategies to design the sensors enabling real.-time monitoring of heavy metals were implemented: (i) discriminative analysis by using Anodic Stripping Voltammetry (ASV) technique and (ii) fat Response-Recovery heavy metals detection based on monitoring of changes in graphene conductiviiy/resistance under metal accumulation conditions. Both methods exploit the epitaxial graphene on 4H-SiC as an active component of the detection system (working electrode or conductor/resistor). In this regard, the special focus was placed on a comprehensive study of the quality of this material.
Author: Ivan Shtepliuk
Traditional forms of collaboration need to be rethought, enhance and renewed. Some ways to address this challenge is to study insufficiency and tensions in collaborative structures engaging companies, academia, public and national authorities; platforms that enable new cooperation efforts and the exchange taking place in these platforms that aim at creating new opportunities and ways forward. Such exchange are tension laden fields where different stakeholders' interests, stakes and logics are at play. The challenges characterizing the initial stage of the collaboration concern issues of infrastructure and physical location of the research; the ambiguous relation between academia and the research institutes; configuration of the different utilities and interests in the network. In this project we have studied the capacity building in the topic of advanced materials as regional strength (smart specialization), and the transition phases from a expert group working on the idea to implementation of a project and cooperation exchange (Innovative Materials Arena) with a operational team.
Author: Mariana Gustafsson
For many metal components the presence of hard, non-metallic inclusions such as ocides lowers the impact toughness by acting as fracture initiation points and easing crack propagation. In components produced by powder metallurgy hot isostatic pressing (PM HIP), oxides often form a continuous network of small, spherical inclusions after consolodiation at the prior particle boundaries (PPB). It is therefore of great importance to reduce surface oxides before consolidation in order to improve mechanical properties.
Author: Pelle Melin
The aim with the project is to develop a virtual design approach for case gardened components. Until 2018-09-30 the main focus has been development of the computational model and fatigue predictions. Some fatigue testing has been made as well as design of the fatigue specimens needed to test the hardened material structure. The whole simulation approach has been used for predicting the tooth root bending strength of gear used Scania gear boxes where good predictions of the fatigue life was made. The next step is prediction of the fatigue life at running tests of a gear box.
Author: Erik Olsson
Several sensor techniques have been evaluated during the project to investigate the possibility to use them in order to monitor corrosion in glass fibre reinforced plastics (FRP). The project has found very promising techniques as well as less hopeful ones to use for the application. the lamb wave technique seems to be the most promising one with its easy-to-follow and easy-to-install properties. The technique is also very useful since the sample area in which its function is quite large in comparison with other sensor system. There are many ways in which a sensor can be incorporated into an FRP matrix and many different sensors available, which makes it hard to investigate all the possible scenarios. In this report the focus has been on sensor techniques and systems that could be used in the daily life, not just in a laboratory. The goal is to com up with an easily implemented and operated system, that can monitor the critical service life parameters of the FRP components.
Author: Nina Pendergraph
Incomplete CO oxidation during motor vehicle cold starts is a significant source of harmful CO emissions. With new, more fuel efficient engines there is a slow heating of the catalyst leading to a significant time delay in the onset of CO oxidation. This is now one of the major bottleneck in terms of improving reduction of emissions. Many alternatives have been explored in attempts to find good candidates for low temperature CO oxidation. However, these typically depend upon the use of expensive noble metals. At the same time nanostructured inexpensive Cerium dioxide (CEO2, ceria) have demonstrated promising results. The current proposal seek to unravel the mechanisms at play in this low temperature oxidation using theoretical simulations and aim to determine what type of surface structures that are beneficial/detrimental for this oxidation.
Author: Jolla Kullgren
The aim of the project is to explore a practical solution for creating ulthrathin materials for high-performance electrochemical capacitors (also called supercapacitors). It is based on selecting and evolving two materials (MXenes and Porous carbon) for maximizing their adsorption capacity surface and thus drastically improving the performance of the electrochemical capacitors. The rapid advance of materials for supercapacitors is critically conditioned by the size/shape and formation mechanism of pores and related defects. The control of porosity at atomic level, the nature of the pores average size/distribution, and the pores/defects shape in relation to the total specific surface area of ultrathin material, is perceived as the key factor for achieving its efficient supercapacitors. In this project, I will apply the DFT-based modeling method Synthetic Growth Concept that I originated in my group. Within this project, the Synthetic Growth Concept method will be evolved for the target materials: (i) at DFT level, and, (ii) by integrating ab-initio Molecular Dynamics for the benefit of understanding pore evolution. This new knowledge will be used to guide the synthesis of these ultrathin materials in direct synergy with the world-leading team in MXenes and porous carbons for supercapacitors from A.J. Drexel Nanomaterial Institute. The two teams: (i) team at Linköping University (modeling), and (ii) the team at Drexel (synthesis and characterization) led by Prof. Yury Gogotsi (with whom I have an established collaboration) possess unique and complementary competences. The research proposed in this project convincingly exemplifies one of the “hottest” technological issues in current energy research: the supercapacitor market is expected to reach USD 2 Billion in 2017 due to, besides other applications, efficient eco-friendly public transportation (public busses using supercapacitors, currently being implemented in many cities in China and US).
Author: Gueorgui Gueorguiev
The proposed research project will focus on the synthesis, characterization and property determination of novel niobium-based MXenes indented for high-performance battery electrode applications. The novel composition-modification strategy will by applied to MXenes which offers a potential breakthrough for achieving energy storage enhancement. The project holds the key in expanding the MXene family with addition of the new phases and providing the definite proof of principle in MXenes energy capacity enhancement.
Author: Justinas Palisaitis
My goal with this research proposal is to study the use of cellulosic biomaterials such as cellulose nanofibrils (CNF) as substrate for transient electronics and the use of 2D materials and organic biodegradable inkjet inks for the printed electronics. Nanocellulose nanopapers was successfully used as a substrate for electronics but not for transient electronics as we aim with this project. Transient electronics is exactly the opposite of modern silicon electronics that has the goal to last forever. When exposed to water, transient electronics disintegrate at a predictable rate while releasing biologically and/or environmentally benign end products. One can use an electronic component, for instance, as a temporary implant in a patient and allow it to dissolve safely on its own without the need for a second surgery. Ultimately, transient electronics can solve the problem of disposing electronics in a safe and convenient manner reducing electronic waste. Transient electronics could not only revolutionize medicine – but also environmental monitoring and consumer electronics. Sensors to measure key parameters of a chemical spill, transmit data, and then ultimately degrade, leaving no ecological impact are some examples of applications for transient electronics. To print a simple thin film transistors one would need a layer of conductor, semiconductor and insulator. I used 2D materials such as graphene and molybdenum disulfide to produce inkjet inks to print those materials onto flexible substrates such as paper. These materials can be solution processed meaning that they can be exfoliated into very thin layers. In large scale, the techniques used to deposit the inks may vary according to the level of resolution and the volume to be printed. Nanocellulose can be used as the dielectric or insulator layer in this application and the inkjet printed nanomaterials the electric circuit.
Author: Viviane Forsberg
The SUTA project aims at developing next-generation ultrahigh-temperature materials. Ultrahigh temperature materials are of critical importance to the aerospace and power-generation industries, as enhancing the operating temperature of turbine engines can greatly improve the fuel efficiency. The search for superior ultrahigh temperature materials than the currently used nickel-based superalloys, has been almost stagnated by the limitation set by conventional alloy design that is based on materials with one principal element, or more specifically, the relatively low melting points of nickel-based superalloys, and the difficulty in reaching the balanced high-temperature strength and oxidation resistance for refractory alloys with higher melting points, such as molybdenum- and niobium-based alloys. Here we will use a paradigm-shifting alloying strategy, to design refractory multi-principal-element alloys as new generation of ultrahigh temperature materials, integrating both experimental studies and theoretical predictions based on computational thermodynamics and electron theory. The project will address to three scientific challenges: 1) designing compositionally complex multi-component alloys, 2) achieving the strength-ductility balance and also 3) achieving oxidation resistance-mechanical properties balance in multi-principal-element alloys via alloy design. The successful implementation of the project will bring unprecedented scientific understanding to the research of multi-principal-element alloys, which is now at the research frontier of metallic materials, and lead to the development of novel ultrahigh temperature materials enabling turbine engines to operate at higher temperatures, with a huge application potential to transportation and energy industries.
Author: Sheng Guo
Ni-based superalloys possess excellent combination of mechanical properties and environmental resistance at elevated temperatures; however, grain boundaries of the superalloys are always a source of weakness due to their interaction with gaseous environments. This problem is of particular concern when considering the application of Ni-based superalloys in the hot sections of aero- and land-based gas turbines, in which the components are exposed to corrosive gas streams whilst under high stresses at temperatures in excess of 700°C. Furthermore, operating temperatures are rising markedly due to ongoing fuel efficiency demands and the need to reduce emissions; hence, failure resulted from so-called “stress corrosion cracking (SCC)” is becoming increasing prevalent and is now one of the major limitations to the application of Ni-based superalloys at very high temperatures. The precise mechanism of SCC is contentious, necessitating systematic experimentation and associated characterization at the appropriate length scale to elucidate the underlying physical and chemical factors at play. Additive manufacturing (AM) techniques, e.g., electron beam melting (EBM) can be used to fabricate Ni-based superalloys, with the possibility to tailor the microstructure and reduce the risk of SCC, which can be extremely attractive for the gas turbine manufacturers. Therefore, the successive efforts to find a superior resistance to SCC using AM techniques motivate SCC-SuMan. The overall goal of SCC-SuMan is to elaborate the current understanding of the fracture and cracking behavior of load-bearing EBM-manufactured Ni-based superalloys at high temperatures using a desired microstructure that can reduce the risk of SCC.
Author: Esmaeil Sadeghimeresht
This project will identify the final step for use of two-dimensional MXene materials in a circular economy. This will be accomplished by identifying and optimizing a process window for the controlled release of CO2, captured on the two-dimensional MXene surfaces, the subsequent conversion of CO2 into combustible fuels in the vicinity of H2 and the cyclic use of the MXene.
Author: Per Persson
The main goal of H-Materials is to produce a technological breakthrough based on the concept of higher-symmetric metamaterials, to produce highly efficient antenna systems for 5G communications. Mobile communications have evolved rapidly during the last few decades. In order to fulfill the users’ broadband demands, the new generation of mobile communications, 5G, will be deployed after 2020. However, there are a number of technological challenges that must be solved first. In H-Materials, we will focus our attention in the existing challenges to produce efficient antenna systems for the new frequency bands, which are much higher than those of present mobile communications. To overcome this challenge, we will explore the opportunities of new materials with higher symmetries, in which KTH is leading worldwide the research, to provide fully-metallic integrated antenna solutions for the expected 5G frequency bands: Ka- and U-band. These integrated solutions will be intended for base stations, with the support of Ericsson. The ambitioned results at H-Materials are aimed to contribute to situate Sweden as the center of the antenna research in the world for 5G. If H-Materials successes, we will establish the ideal conditions for further development of small and medium size high-tech communications companies in Sweden.
Author: Oscar Quevedo-Teruel
The current proposal is an inter-disciplinary research activity at the cutting edge of material sciences, with high potential for innovation. The main expected result of the project is to generate a new class of materials and devices that widens the scope of electronics, as it provides fundamental know-how and tools to inspire the development of next-generation technologies in ways not possible today. Applications within energy harvesting and storage are in focus for the project. In this research project, we propose to develop fast and efficient ionic thermoelectric pseudocapacitors with high specific energy and power. The proposed pseudocapacitor comprises a solid electrolyte, which is the ionic thermoelectric material, in combination with n-doped and p-doped conductive polymers used here as the negative and positive electrodes of the pseudocapacitor, respectively. To reach the overall goal of this project, we have designed three closely linked work packages (WPs). In the first WP, we will develop highly-conductive n-doped polymer electrodes. To this end, we will focus our attention on π-conjugated redox polymers carrying both π-conjugation functionality and redox active sites. Ladder-type polymers such as benzimidazobenzophenanthroline-based polymers are in particular focus for this project. In a second WP, we will develop nanostructured p-doped and n-doped polymer electrodes that function as the cathode and anode of the pseudocapacitor. In WP3, we will make use of solid-state electrolytes to fabricate ionic thermoelectric pseudocapacitor (ITEPC). This device will allow us to convert heat to electrical energy and store it in the pseudocapacitor. This new energy storage technology will allow for regulation and distribution of intermittent sources of power, such as solar energy or human body heat. We also foresee this technology will be essential to the implementation of renewables as a viable and economical alternative to fossil fuels.
Author: Simone Fabiano
Increasing production of goods, promoted by growth of world population, depletes already limited natural resources and results in environmental problems. This requires more sustainable use of the raw materials. Chitosan is a biopolymer, which is derived from chitin, the second most abundant natural polymer in the world after cellulose. Chitin is abundantly present in marine wastes – crustacean shells (e.g., from crabs and shrimps). In view of the great abundance, this material is considered to be extremely underused. This project aims at developing new generation of man-made (regenerated) fibres from chitosan, similarly to regenerated cellulose (e.g., viscose) that is produced from wood. Those new fibres can be potentially used in hygiene products, clothes and other textiles. Chitosan has a very similar chemical structure compared to cellulose, which suggests its huge potential in this field. Efforts to valorise chitosan by producing man-made fibres have been previously reported. In standard conditions such fibres normally reached a tenacity of 10–15 cN/tex, compared to cotton that have 15–40 cN/tex. Moreover, the wet strength of such fibres is poor. By increasing the strength of chitosan man-made fibres, new applications may emerge that will expand the use of this material. We have received evidence at Swerea IVF that incorporation of wood-derived nanocellulose into a spinning solution of chitosan results in enhancement of the fibre mechanical properties. Incorporation of nanocellulose may also enhance stability of the fibres in wet state due to high nanocellulose crystallinity. Considering the recent observations, it is important to investigate and demonstrate further potential of such an approach. In general, this research is very promising for expanding Swedish circular and biobased economy by converting chitin wastes into useful material, as well as by using abundant forest resources as a source of nanocellulose, for the production of novel products.
Author: Tobias Köhnke
This project investigates alternative aqueous Zn-based cells relying on open-framework compounds (e.g. hexacyanometallates) to develop advanced rechargeable battery systems. They are promising candidates to decrease production costs, energy expense and pollution due to manufacturing, while offering interesting voltage outputs for stationary storage of electricity. These cells employ only abundant and safe components (i.e. zinc and iron-based compounds) coupled to mild water-based electrolytes to further limit their environmental footprint and favor materials recycling. The main goals of the project are: • Design of an efficient rechargeable aqueous battery relying on more sustainable materials and processes. • Study of the electrochemical reactions taking place at the electrodes to improve cell performances. • Study and stabilization of their reaction interfaces via treatments of the electrode materials and electrolyte tuning. • Expanding the knowledge on novel Zn-cell systems based on open-framework compounds, with a particular focus on Copper hexacyanoferrate (CuHCF). • Achievement of a good cycle life to enable 1000 full cycles with contained losses. • Assessment of the overall cell performances and comparison with those of traditional aqueous cell systems. Developing these cells is important because rechargeable metal-ion aqueous batteries are becoming a low-cost, safe and environmentally friendly alternative to conventional technologies, e.g. Pb-acid, Ni-Cd and Ni-MH, which employ toxic materials and strongly acidic or alkaline electrolytes. The aim is to study and stabilize the Zn interface upon reaction with an aqueous electrolyte and CuHCF as cathodic counterpart. This system offers two main advantages: an average discharge potential of 1.7 V and quick charge/discharge without structural degradation. However, its efficiency is still limited by parasitic processes occurring at the Zn interface, which needs to be stabilized via an effective approach.
Author: Mario Valvo
The main objective of this project is to develop ionic thermoelectric modules that are suitable for low-cost, large area manufacture. The focuses are discovering and optimizing materials, constructing new device concepts, and demonstrating them in practical applications such as power-suppliers and self-powered temperature sensors. The project is progressing well and we have already obtained positive preliminary results. More specifically, we are able to build first-stage fully-printed thermopiles based on solid and flexible electrolytes, which can generate an extremely large output voltage with small temperature difference. This was achieved by developing a novel ambipolar ionic polymer gel with giant and tunable Seebeck coefficient. We can successfully control the Seebeck coefficient of the gel from negative to positive by adjusting the gel composition. This greatly facilitates the lowcost manufacture of ionic hermoelectric module in large scale, and shows promise for high energy density applications. Our work on this topic was recently accepted to publish on Nature Communications (with acknowledgement to the ÅForsk foundation), one of the top journals in science. Next steps involve understanding the mechanism of the thermodiffusion and optimization of device geometry to adapt practical applications. We also explored different possibilities to realize the function of ionic thermoelectric generators as power supplier. Directly utilizing the leaking current and transferring charge to a larger supercapacitor have been preliminarily demonstrated. The tremendous output thermovoltage of the ionic thermoelectric materials plays crucial role in both of the strategies, which cannot be realized by traditional thermoelectric generators. For the self-powered temperature sensor part, we successfully integrated our ionic thermoelectric material with pyroelectric devices, which shows advantages from both effects. In summary, the project is progressing very well and we are eager to continue to investigate the details of the demonstrated devices and to turn them into practical applications.
Author: Dan Zhao
Additiv tillverkning (i dagligt tal kallat 3D-printning) är ett starkt växande fält med många spännande möjligheter. Dels kan man tillverka komponentermed i nya optimerade former, men även skapa nya material genom att i processen styra fastillväxt och mikrostruktur. Ett sätt att tillföra en dimension till designen av material och komponenter är att arbeta med ytan på de 3D-printade materialen. Direkt från tillverkningen har material från additiv tillverkning typiskt en yta med avvikande egenskaper från bulken av materialet, och det finns därmed alltid ett behov för ytbearbetning. Denna ytbearbetning skulle kunna utökas för att ge materialen en utökad funktionalitet. Detta projekt är en förstudie som ämnar undersöka dessa möjligheter, för att sedan kunna gå vidare med mer omfattande studier. Genom ytmodifiering kommer man kunna ge komponenter tillverkade med AM en ökad funktionalitet tex genom att ge ytorna kemisk passivitet eller specifik aktivitet, eller genom att ge dem andra egenskaper än bulken. Projektet kommer utföras i sammarbete med industriell partner, vilket säkerställer att industriellt relevanta system och frågeställningar undersöks. För projektet söks totalt 416 kkr som ska täcka sökandes lön för dennes aktivitet i projektet samt drift.
Author: Erik Lewin
Altris önskar testa skala upp produktionen av ett katodmaterial för natriumjonbatterier samt screena efter den mest lämpliga elektrolyten för detta katodmaterial. Natriumjonbatterier undersöks som ett komplement till Li-jon batterier, framförallt i tillämpningar där stora volymer behövs. Preussisk Vit (PV) är ett katodmaterial för natriumjonbatterier som tappade lite intresse i forskarvärlden pga dess komplexa syntesväg. Nu med en ny enklare syntesväg framtagen och patenterad i Uppsala ses PV åter igen som en kandidat som katodmaterial i natriumjonbatterier. Altris vill därför göra ett snabbprojekt för att validera om produktionsmetoden av PV går att skala upp samt kolla om en screening av de vanligaste elektrolyterna kan ge den prestanda av PV som tidigare har uppvisats i den vetenskapliga litteraturen.
Author: Tim Nordh
Ansökan avser ett fakultets‐ och områdesöverskridande projekt, riktat mot att öka förståelsen för katalys samt resor inom projektet. Projektet saknar i dagsläget en lämplig detektor som noga kan synkroniseras med övrig utrustning, för att ta projektet vidare mot viktiga system som t.ex. CO2 hydrogenering och reduktion av kväveoxider. Katalysatorer är ovärderliga i vår vardag. Man räknar med att mer än 80 % av alla industriellt framställda kemikalier utnyttjar katalys, men det är även ett av våra viktigaste verktyg för att reducera miljöfarliga utsläpp, och spara energi. De består ofta av dyra ädelmetaller och för att minimera mängden av det aktiva ämnet eller för att hitta nya kombinationer av andra ämnen krävs en förståelse på atomär nivå. I heterogen katalys sker reaktionerna företrädelsevis på ytan, det innebär att man behöver veta ytornas struktur, hur molekylerna fäster på ytan, vilka reaktioner som ingår mm., men även gasdynamiken runt ytan och hur den fungerar påverkar processerna är mycket viktigt. Det finns ett ytterst begränsat antal studier av gasen nära en aktiv katalysator mestadels pga. trubbiga analysverktyg, men med laser är det möjligt att med hög rums- och tidsupplösning mäta temperaturer, ämneskoncentrationer och flöden. Genom att använda laser kan man komma åt information där traditionella verktyg går bet, och på så vis finna svar på frågor som annars är omöjliga att besvara. Det slutgiltiga målet är att göra samtidiga, rums- och tidsupplösta mätningar av yt- och gasfenomen vid synktrotronljusanläggningar som t.ex. MAX IV. I det föreslagna projektet vill vi fortsätta att konstituera ett nyligen etablerat samarbete där vi för samman kunnande från katalys och ytfysik med laserdiagnostik och optisk mätteknik, två starka forskningsområden vid Lunds universitet, vilket bildar en världsunik konstellation som kan föra utvecklingen inom katalys framåt – en process som blir allt viktigare i ett samhälle där hållbar och energisnål utveckling är framtiden.
Author: Johan Zetterberg
An increased use of wood as a construction material is key to decrease carbon dioxide emissions from the construction sector. This use is presently limited by wood’s susceptibility to fungal degradation. Traditionally, the resistance to fungal degradation is improved by impregnation with biocides but alternatives are needed due to environmental and health issues. Instead, chemical modification, i.e. acetylation, can be used, but the exact mechanisms behind the increased durability are not known, except that it is related to the reduced moisture content of the modified wood. However, the fungi’s ability to degrade the wood is not simply determined by the amount of water in the wood; the location and state of the water within the wood structure is also important but much less studied. The aim of the present project is to understand the influence of acetylation on the amount, location and state of water in wood to increase the understanding of the mechanisms behind the increased durability. This will be done by targeted, well-defined modifications and use of unique combinations of methods enabling studies of how the modifications affect water in different parts of the wood structure at moisture levels relevant for fungal degradation.
Author: Maria Fredriksson
Nya anoder kommer att utvecklas för att möjliggöra konceptet aluminium-litiumjonbatterier (Al-LIB), en mer hållbar och kostnadseffektiv design än traditionella LIB, och syftar också till att nå upp till 25% förbättrad specifik energitäthet på cellnivå. För att kunna gå över från fossila bränslen till förnybara källor behövs energilagring i stor skala och till rimlig kostnad. Medan de flesta forskningsinsatser på LIB hittills har inriktats på att nå högsta möjliga energitäthet, så blir kostnader och hållbarhet allt viktigare för alla större applikationer, som elfordon och lagring för elnätet. Här används en ny, kostnadseffektiv tillverkningsmetod av nanodesignade Al-baserade anoder, med hjälp av hållbara material, för att möjliggöra Al-LIBs. Den föreslagna Al-LIB-designen bygger på Al-baserade anoder, dels av Al-folie belagd med AlLi-legeringar och dels av nanostrukturerade tunna filmer av Al och dess Li-legeringar, för att förbättra cykelstabiliteten och effektdensiteten.
Author: Niklas Lindahl
Förmågan att i förväg förutsäga beteenden hos olika föreningar och material är en hörnsten inom både kemi- och materialvetenskapen. Med hjälp av bland annat kvantkemiska verktyg har vetenskapen nått imponerade framgångar i denna strävan. För att möta framtida utmaningar och krav krävs dock nya innovationer och tillvägagångssätt. Som en del i detta ansöker jag om finansiering för att utveckla nya metoder för att snabbt och effektivt uppskatta molekyl- och materialegenskaper. Dessa kommer vara baserade på en kombination av kvantkemiska metoder för utvärdering av lokala reaktivitetsdeskriptorer och maskininlärningsalgoritmer. Deskriptorena som kommer att användas har nyligen tagits fram och testats av mig och min tidigare handledare (Tore Brinck) och har uppvisat goda förmågor att förutsäga lokala egenskaper hos molekyler, nanopartiklar samt metal- och oxidytor. Genom att använda deskriptorerna kan antalet beräkningssteg (och därigenom resurs- och tidsåtgången) minskas avsevärt. Genom att koppla deskriptorerna till maskininlärningsalgoritmer och referensdataset kommer jag ytterligare kunna snabba upp samt förbättra noggrannheten hos molekyl- och materialegenskapsuppskattningarna. Detta skulle erbjuda förbättrade möjligheter att screena efter och utveckla nya material för exempelvis katalys eller vätgaslagring, eller för framställning av molekyler för läkemedelsindustrin. Det projekt som föreslås omfattar tydliga delsteg för att verifiera deskriptorernas förmågor, göra metoderna allmänt tillgängliga och för att utveckla metoderna med hjälp av maskininlärning. Studierna kommer att utföras under 12 månaders tid vid Stockholms universitet i Lars GM Petterssons grupp. Tack vare nära kontakt med världsledande forskare inom yt- och beräkningskemi hoppas vi effektivt kunna utveckla, testa och sprida våra metoder.
Author: Joakim Halldin Stenlid
In this project, we will employ standing surface acoustic waves (SSAW) for self-assembly of nanoparticles capable of storing electrochemical energy (e.g. Lithium intercalating salts and transition metal oxide nanoparticles, and carbon nanoparticles) into microbatteries. Ultrasound directed self-assembly with SSAW solves two of the main challenges for the fabrication of microbatteries: 1) The acoustic waves enables controlled mixing of various nanoparticles, including those that are not easily dispersed. 2) the standing waves enable micropatterning of the particles over large areas, and thus offers an alternative for micropatterning of interdigitated electrodes, without the need for photolithography microfabrication, and cleanrooms. SSAW may provide simple and versatile tool for fabrication micrometere-sized electronic components and energy storage devices.
Author: Mahiar Max Hamedi
The proposed project involves research that will contribute to solving current (and arising) issue of safety of glass structures. Currently, Europe lacks of standardized guidelines, design approaches or standards (codes for design) dedicated for the design of structural glass components to be used in everyday engineering practice. The main objective of the project is to develop guidelines for the safe design of glass structures. The outcomes of the project will be use by structural engineers in their everyday practice. In addition, the results of the project will extend the current knowledge about impact loads on glass structures, in particular, regarding evaluation of glass structures regarding its safety. This will be based on the analysis of current standards (related to glass), publications and design approaches with close collaboration with industry. The next step will include extensive experimental testing on structural glass components with different fixing systems, types of glass and interlayers. Following, appropriate numerical simulations will be carried out to simulate the performed experiments in order to calibrate the numerical models. The validated models will be further used for parametric studies for different assemblies.
Author: Marcin Kozlowski
Kännedom om motståndskraften hos olika material med avseende på kloridhalt och temperatur vid höga pH skulle underlätta för processindustrier med dessa miljöer att välja tillräckligt tåliga material, samtidigt som inte onödigt dyra skulle väljas. Detta projekt har som mål att experimentellt utreda tåligheten hos 5 metalliska material i miljöer med höga pH, höga kloridhalter och relativt höga temperaturer, tillika miljöer representativa för pappersmassaindustrins askreningssystem.
Author: Magnus Nordling
Löprännorna är några av de mest utsatta delarna för omfattande korrosion och andra typer av skador i en sodapanna, och har vanligen en livstid på ett år. Kostnaden för byte av löprännor ligger på ca 100 000 Skr per löpränna, varför en ökning av livslängden skulle bespara bruken stora kostnader. Detta projekt syftar till att ta reda på om det finns några konstruktionsmaterial som skulle kunna ge löprännor utökad drifttid. Projektet kommer att utföras dels som en erfarenhetsinsamling och litteraturgranskning, men framförallt som en materialexponering i labbmiljö.
Author: Magnus Nordling
The aim of the project was to synthesize iron based cesium containing Prussian blue analogues and investigate the effect cesium has on stabilising the Prussian blue structure during synthesis and subsequently during electrochemical cycling with the objective to boost electrochemical performance by preventing a structural phase transition. In order to meet these aims, a series of cesium containing Prussian blue samples were synthesised via a co-precipitation method in an acidic reducing solution. We successfully produced Prussian white with partial substitution of Na for Cs. The composition seems to follow the stoichiometric mixture of Na and Cs in the initial reaction vessel, adding confidence to our observations. Addition of Cs favors cubic symmetry, likely due to the larger size of Cs, as predicted. However, the samples appear to be more sensitive to humidity converting to cubic Prussian blue and Na4Fe(CN)6, whereas the non-cesiated structure remains largely unchanged. The dehydration properties of the material also changes, with a more gradual removal of moisture compared to the Cs free samples. Upon dehydration, most samples distorted to the rhombohedral structure with the exception of the highest Cs-content sample (x=0.239 in Na2-xCsxFe2(CN)6 . yH20) which formed a mix of cubic and rhombohedral structures. Given the huge parameter space in synthesizing Prussian blue combined with the challenges in determining composition further work will need to be performed to confirm our observation that Cs stabilizes the cubic structure and to understand why the samples are sensitized to moisture. With thoroughly characterized samples, electrochemical testing can begin.
Author: William Brant
Projektidén för FullSync4D är att ta samarbetet och arbetet ifrån FullCorr till nya dimensioner i flera avseenden. Genom att växla upp samarbetet och tekniken som utvecklats för 2D i FullCorr (FIB-SEM-DIC) vidare till state-of-the-art 3D-materialkaraktäriseringstekniker som synkrotron och tomografi ser vi här en möjlighet att ta Sverige till en världsledande position inom materialkaraktärisering för gjutna material och integrera resultaten in i en unik simuleringsbaserad produktframtagningsprocess för lättviktskonstruktioner i fordonsbranschen. Det övergripande målet med projektet är att möjliggöra en unik beräkningsteknik som tar hänsyn till inverkan av materialdefekter, och integrera detta i den simulerings- och optimeringskedja som utvecklas i det parallella projektet ODISSEE2. För att möjliggöra detta kommer experiment av högsta tänkbara vetenskapliga klass genomföras vid en av världens ledande synkrotron-anläggningar. Detta projekt ger 2 unga forskare, en vid JTH och en vid RISE, en möjlighet att kombinera och utveckla sina kompetenser genom att fortsätta det samarbete som initierades av det av ÅForsk tidigare finansierade FullCorr-projektet, och tillsammans med etablerade ledande forskare inom området ta nästa kliv mot utvecklingen av världsledande kompetens inom såväl materialkaraktärisering som materialmodellering och simulering. Projektet är utformat för att möjliggöra unika experiment som levererar data och resultat till ett parallellt forskningsprojektet som finansieras av KK-stiftelsen och företagen Volvo Cars, SCANIA, Husqvarna AB och Kongsberg Automotive AB. FullSync4D kommer därför göra det möjligt att fånga en unik möjlighet att integrera experiment av världsklass in i ett projekt med industri-tillämpning, och resultaten från projektet kommer kunna gå rätt in i industriella applikationer och snabbt kunna implementeras in i produktframtagningsprocessen hos Sveriges samlade fordonsindustri.
Author: Jakob Olofsson
The project aimed to synthesize mesoporous silica of SBA-15 type doped with catalytically active elements, such as Zr and Zn and study the formation process in situ. The results show that substituting Si with other materials is a difficult task and even though Zr can be added up to a Zr/Si molar ratio of 0.1, doping with Zn and other elements such as Ni, Co, Cr and Fe only provide trace amounts of the active element. Cu can however be doped into the material with approximately Cu/Si molar ratio of 0.02. Various synthesis parameters, such as metal salt concentration, salt addition time, type of salt, and mixing rate were tested. However, it was not possible to increase the Cu concentration further. The formation of the materials were studies using in situ attenuated total reflectance. It was observed that the addition of a metal salt slightly decreases the material formation rate, but no changes in the silica structure could be observed. Doped mesoporous silica films were successfully grown on silicon wafers using the Direct Growth method.
Author: Emma Björk
Genom omställningen från ett fossilbaserat energisystem till ett baserat på förnybara energikällor så har efterfrågan på effektiv energilagring med hög energitäthet ökat monumentalt. Än så länge har Li-jonbatterier varit den främsta källan till kompakt energilagring, men högre energitäthet än vad denna typ av batterikemi kan leverera är önskvärt inte minst för elektrifiering av fordonsflottan, där högre energitäthet direkt kan översättas i ökad räckvidd. Här har batterier med anod av Li-metall lyfts fram som den batterikemi som erbjuder den högsta energitätheten på anodsidan - 10x högre än för dagens grafitanoder. Sanningen är dock att ännu högre lagringskapacitet kan fås i en sådan battericell om Li-metallen helt enkelt tas bort. Ett sådant "anodlöst" batteri innehåller inget överskott av Li, utan förlitar sig på det Li som finns lagrat i katoden, som vid uppladdning pläteras på anodsidans strömsamlare. Detta kräver en elektrolyt som långsiktigt kan leverera (1) hög laddningseffektivitet, (2) hög stabilitet i kontakt med Li-metall och (3) motstånd mot dendritbildning vid plätering av Li-metall. Allt detta kan polymerelektrolyter leverera. Detta projekt syftar till att utveckla polymerelektrolyter som kan ge hög laddningseffektivitet vid plätering av Li-metall och applicera dessa i långsiktigt stabila Li-batterier med anodlös konstruktion som därigenom får extremt hög energitäthet.
Author: Jonas Mindemark
The purpose of this grant application is to develop a flat thin lens in form of a thin film for concentrating solar energy on a photovolatic panel. The distinctive feature of this concentrator is its predefined spectral and spatial selectivity coupled with beam splitting. The lens will be based on a quasi-periodic arrangement of a transparent dielectric material. The work will include an exhaustive theoretical study of periodic and quasi-periodic complex-structured media as well as an experimental part involving fabrication of samples. Special attention will be paid to exploring the light trapping and non-mechanical sun tracking system based on the structures to be developed. Among the materials to be studied will be 1) AlInN nanorods; 2) cholesteric liquid crystal polymers; and 3) holographic gratings based on photopolymers (azo dyes). We expect that in addition to study in material science and solar energy utilization will make the work a good background for farther commercial implementations.
Author: Sergiy Valyukh
Thin fiber networks are widely represented ion nature and can be found in man-made materials such as paper and packaging. The strength of such materials is an intricate subject due to inherited randomness and size-dependencies. Direct fiber-level numerical simulations can provide insights into the role of the constitutive components of such networks, their morphology, and of randomly generated large and thin fiber networks is characterized by overwhelming computational costs. Herein, a stochastic constitutive model for predicting the random mechanical responses of isotropic thin fiber networks of arbitrary size is presented. The model is based on stochastic volume elements (SVEs) with SVE size-specific deterministic and stochastic constitutive law parameters.The randomness in the network is described by the spatial fields of the uniaxial strain and strength to failure, formulated using multivariate kernel functions and approximate univariate probability density functions.
Author: Rami Mansour
The project achieved the overall goal of developing a novel class of stretchable all-organic rechargeable batteries. This was achieved by the successful implementation of the four work packages: • WP1 – Two typed of organic stretchable electrodes were developed, one dense composite electrode and one microporous foam electrode. • WP2 – Two types of stretchable ion separators were developed, one stretchable hydrogel separator and one ion selective cellulose nanofibrils separator. • WP3 – Stretchable batteries were assembled and characterized. • WP4 – A demonstrator including a 4-cell battery and a LED was developed. Two designs were developed for constructing the stretchable organic batteries: • Approach 1 comprised dense composite electrodes and a hydrogel separator. Here the redox molecules were assembled directly on the conducting polymer electrodes. • Approach 2 comprised microporous foam electrodes with soluble redox molecules and an ion selective separator. This potentially allows for a higher loading of redox molecules which reduce the cost of the device. Approach 1 - dense composite electrodes. The project started with the development of the redox-enhanced stretchable electrodes (WP1).
Author: Klas Tybrandt
Summary of the project - This research project focused on the application of the technique neutron reflectivity (NR) to study the nature of the protective surface oxide layer on FeCrAl steel. These materials are the material of choice for so-called interconnects in environmentally friendly solid oxide fuel cells (SOFCs). SOFCs combine high efficiency and fuel flexibility and is expected to be one of the technologies that will enable the transition towards a sustainable energy system, however the nature of the protective surface oxide layer, especially regarding the possible presence, nature, and role of hydrogen (H) in this layer, is not fully understood. This lack of understanding hampersthe development of next generation materials for SOFCs.
Author: Maths Karlsson
3D-printing (Additive Manufacturing) of metal materials is growing very fast in various industries such as aircraft, aerospace and biomedical industries. The AM process involves many interacting phenomena including heat transfer, sintering, melting, solidification, fluid flow, phase transformation and microstructure formation. The primary concern is heat and mass transfer mechanisms on both macro and microscopic scales. Conduction in powder is less efficient than in a continuous solid part since conductive transfer can only take place where particles are in physical contact with one another. Accurate information of thermal properties of metal powder in AM is essential for high-fidelity process modeling and simulation. There are little published thermal property data regarding metal powder used for AM. This results in our first objective of developing an experimental method to measure the thermal properties of powder and solid which is tailored to the powder bed condition and an inverse method to obtain the thermal conductivity of powder for the given condition of AM by combining laser flash testing, finite element heat transfer modeling and variables optimization. On the other hand, computational modeling and simulation methodologies for AM processes have been widely utilized, which is helpful to some extent to the development of AM. The analytic solution of thermal models can offer higher computational performance compared to numerical method like finite element. In this work, the proposed semianalytic thermal model for powder-bed AM process has been implemented with temperature-dependent material properties. It enables the rapid development, tuning, and evaluation of a control scheme or process parameters without the need for extensive computing time or resources. Furthermore, the developed thermal model has been implemented in the computational tool (MicAM) for AM process. The integrated software facilitates the property calculation, modeling work and the further parameter studies. The results can be visualized in three dimensions, and the size of the molten pool at any scanning time can be measured by using modern 3D graphic technique. In summary, this project aims at developing a robust method for powder thermal property and thermal modeling enabling fast process parameter development in powder bed additive manufacturing.
Author: Chunhui Luo
Accessing freshwater, one of the most fundamental human needs, has become more and more challenging during the past decades. The continuous growth of population and energy consumption is, together with alarming climate changes, expected to have an increasingly negative impact on the life conditions on Earth. Currently, more than one billion people around the world are suffering from a shortage of clean water and its adverse consequences on health, food and energy. A key technology that could mitigate this trend is the development of cheap, long-term stable and effective systems for combined seawater desalination and ion purification. In this project, we have developed disruptive electrochemical cells for seawater desalination and ion purification.
Author: Håkan Pettersson
Uppsala University received from ÅForsk to carry out a project investigating inexpensive multicomponent corrosion resistant coatings to be used in fuel cells with a possibility of expanding their use in any other industrial application, where conventional stainless-steels are used. Access to such coatings can have a large impact on the development of fossil-free sustainable vehicles, decreasing the emission of pollutant gases [1-3]. The composition of the multicomponent alloy CrMnFeCoNi [4] was used as a starting material, because its composition is an extension of stainless steel and is known for its excellent mechanical properties, and formability [5]. Preliminary results [6] had showed that the addition of carbon in the CrMnFeCoNi multicomponent coatings could improve their corrosion resistance. The corrosion resistance of near equimolar CoCrFeMnNi magnetron-sputtered coatings produced in the Inorganic department of the Uppsala University embedded with different carbon concentrations (i.e. 0 , 7 at.% and 11 at.% C) was estimated in acidic environments, such as 0.05 M H2SO4 and 0.05 M HCl, because in terms of applications the low pH conditions are preferable to be tested (i.e. coating production for PEM fuel cells applications). Further corrosion studies performed within this project to explore the role of carbon and the reasons for offering a higher corrosion resistance in the coatings. The evaluation of the corrosion resistance of the coatings was done by use of electrochemical means including: open circuit potential measurements (OCP), electrochemical impedance spectroscopy (EIS), polarization curves, and microscopy (SEM/EDS) and spectroscopy (XPS) means. The selection of HCl electrolyte was due to the fact that Cl- ions result in pitting corrosion phenomena on stainless steel compositions. The electrochemical results showed that no significant differences were observed for the films in the passive region when carrying out the experiments in 0.05 M H2SO4 and 0.05 M HCl, respectively, but the concentration of carbon and the choice of electrolyte, however, affected the current in the transpassive region, at potentials above 0.85 V vs. Ag/AgCl (3M NaCl). The carbon-containing films were more corrosion resistant in 0.05 M HCl than in 0.05 M H2SO4, in the transpassive region, due to a lower carbon oxidation rate, which facilitated the formation of a Mn-rich oxide layer. This is a very important finding in terms of corrosion, because a stainless-steel composition is not corrosion resistant at high potentials due to further oxidation of Cr, while in the presence of Cl- ions its corrosion resistance suffers from pitting corrosion.
Author: Eirini-Maria Paschalidou
The vast growth of interest in sustainability implies a substantial interest from transport OEMs in high performance bio fibre reinforced composites. Natural fibre polymeric composites have been used in different automotive non-load bearing components and have demonstrated the potential of this type of composites. The wood-based cellulose fibers are an important resource from the Swedish forest industry which can be used as pulp-based rayon fabrics as bio-based reinforcement material. Moreover, the development of a liquid thermoplastic resin has recently received attention due to its recyclability and similar processing technology to thermosets. Preliminary studies have shown that Elium® resin has the potential to provide an innovative alternative to the use of epoxy-based resin systems.The aim of this project is to develop a new sustainable form of recyclable polymer composite produced from renewable resources, comprising the structural and flammability performances required for aircraft and train interior applications. The project results are to be exploited within the mass transport sector, where the cellulose fabric resin systems will be used to manufacture lightweight and flame-resistant composite face sheets for aircraft and train interiors. To ensure the achievement of the work, firstly, rayon fabric composites will be fabricated and characterised to evaluate their mechanical performance, thermal and damping behaviours. Process simulation of the bio-based composite plates will be performed. Secondly, flame retardant mats will be used to enhance fire resistivity of the bio-based composites in such a way to meet the flammability, heat release and smoke requirements. Thirdly, rayon fibres will be treated using commercial chemical agents to improve the fibre-matrix interfacial adhesion to lead to enhanced mechanical properties. Finally, simulation and prediction of rayon fabric Elium® thermoplastic composite processing for the target interiors will be formulated.
Author: Pooria Khalili
The aim of this project is to further optimize the graphene film successfully grown on diamond and to use this as a means to inject charge. The process of depositing graphene is based on rapid thermal annealing in the presence of a metal catalyst. This eliminates the need of transferring graphene to diamond and thus avoids a major challenge in graphene device fabrication. A topological as well as electrical characterization of the graphene layer and how it varies with different parameters is in progress, but further study is still needed
Author: Nattakarn Suntornwipat
Återvinning av sällsynta jordartsmetaller (REE) är på väg att bli ett aktuellt problem med tanke på kommande övergång till elbilar som dominerande transportmedel. Målmaterialet för återvinning är nickel-neodym- och kobolt-samariummagneter som används både i elbil motorer och i elgeneratorer för vindkraft. I det aktuella projektet kommer vi att utveckla fasta högkapacitets adsorberande material med förmåga att effektivt separera REE och 3d-övergångsmetaller. Deras ytskikt kommer att funktionaliseras med specifika ligander som ger möjlighet till särskild igenkänning av olika metallkatjoner och deras separation med hög selektivitet. De aktiva adsorptionsställena kommer att väljas från tiofosfonat-, aminofosfonat- och aminokarboxylatfamiljer. Adsorbenter ska karaktäriseras med hjälp av avancerade mikroskopiska och spektroskopiska tekniker. Komplexeringsmekanismer kommer att följas av EXAFS-spektroskopi och visualiseras med hjälp av strukturstudier av relevanta molekylära modeller. Mono- och bifunktionella skikt kommer att produceras och undersökas. Både magnetiska nanopartiklar för separation genom magnetisk extraktion och mesostrukturerade kiseldioxidpartiklar för användning vid kromatografisk separation kommer att produceras och utvärderas.
Author: Gulaim Seisenbaeva
Syftet med projektet är att bidra till minskat klimatavtryck från byggindustrin. Inom dagens träbyggande används nästan uteslutande barrträ, medan lövträ används endast till mycket begränsad del. För lövträslag såsom björk och bok finns dock stor potential att utveckla högpresterande produkter för konstruktionsändamål. I modernt träbyggande används olika typer av träbaserade produkter, tex korslimmat trä (KL-trä). Lövträvirke skulle mycket väl kunna passa för tillverkning av byggkomponenter. Den mesta forskning som finns publicerad om mekaniska egenskaper för lövträ är av allmän karaktär och inte med inriktning mot användning för bärande konstruktioner. Tidigare studier visar dock att flera vanliga europeiska lövträslag kan ha avsevärt bättre egenskaper jämfört med våra vanliga barrträslag. I projektet kommer lövträdslag undersökas med inriktning mot mekaniska egenskaper avseende hållfasthet och styvhet samt brottmekaniska egenskaper för att möjliggöra dess användning för högpresterande byggnadselement. Forskningen består av experimentella och teoretiska studier för att ge kunskap om grundläggande materialegenskaper. Projektet genomförs i samverkan med ett större forskningsprojekt i samarbete med Skogforsk och Aalto-universitet i Finland. Sammantaget utgör dessa projekt en större insats inom området träkonstruktioner, där forskargruppen undersöker grundläggande egenskaper för trä som konstruktionsmaterial samt utvecklar metoder för beräkning av styvhet och bärförmåga.
Author: Henrik Danielsson
We want to utilize commercial mechanical pulps to cost-efficiently produce new wood "fibres" suitable to use in composite applications without addition of petroleum based resins and matrix materials. This will allow for completely new product areas for composite materials from all renewable resources. The lessons learnt from our proposed project will also lead to more efficient use and production of conventional thermomechanical pulp (TMP) and chemi-thermomechanical pulp (CTMP). Notably and important. the removal of petroleum-based materials will gain significant energy savings and is environmentally friendly.
Author: Armando Córdova
In this project, the focus has been to utilize byproducts (or underutilized products in today’s industry) from renewable biomass as a starting material for enzymatic elongation of the head groups of selected surfactants of the alkyl glycoside group. Novel enzymes for this purpose have been selected, cloned, produced and analyzed. The first choice of raw material has been wheat bran, which is an agricultural by-product used as low value ingredient in food and animal feed, and large amounts of the bran are due to overproduction, just used as a source of energy (being burnt). The hemicellulose fraction of wheat bran was used as substrate to produce alkyl-glycoside-type surfactants. Thus, enzymes with hemicellulose (mainly xylan) hydrolysis and transfer reactions were developed, produced and tested in the production of alkyl-glycosides. Glycoside hydrolases family 10 (GH10) from plants were identified as potential enzymes for the production of biosurfactants. Indeed, we produced a GH10 from Eucalyptus globulus via recombinant technology using Pichia pastoris as host (Izzati et al, 2018). Another attractive candidate is a xylanase GH10 from the thermophilic bacterium Rhodothermus marinus. The transfer reaction of this enzyme can be improved via protein engineering. The residues involved in the reaction were identified via computational modelling and site-directed mutagenesis (Aronsson, et al. 2017), and use of this enzyme has resulted in transfer products with sugar headgroups composed of two to six xylose-residues (at least two sugar residues are desirable) (results to be published).
Author: Javier Linares-Pastén
In this project all-organic proton batteries have been studied targeting stable charge/discharge at 1 V cell voltage. A number of conducting redox polymers carrying different quinone redox units have been synthesized, electrochemically characterized, and studied as such protkn batteries. The approach presented in this report show which chemical features are required and waht other considerations are important to achieve both high stability (rechargeability) and cell voltage for such proton batteries. Both aqueous (water) and organic containing proton electrolytes have been studied to explore its effect on the battery characteristics which revealed markedly different results.
Author: Rikard Emanuelsson
Ett framtida konkurrenskraftigt biobaserat samhälle bygger på att förnybara råvaror kan utnyttjas effektivt för produktion av exempelvis bränslen, kemikalier och material. För att nå ekonomisk bärighet för en sådan produktion baserad på växtbiomassa, lignocellulosa, krävs optimering av flera steg i processen, inte minst det steg där mikroorganismer omvandlar sockret till produkt. Det här projektets övergripande mål har varit att ta skräddarsy jäststammar för lignocellulosa-baserad produktion. För detta ändamål har vi arbetat för att utveckla en ny metod för markörfri genommodifiering av industriella jäststammar. Metoden, som är baserad på CRISPR/Cas9-teknik, möjliggör att vi kan sätta in flera genkopior i ett enda steg i jästgenomet vilket resulterar i högt uttryck av de proteiner som generna kodar för. Det här är användbart för att konstruera jäststammar som kan tillgodogöra sig alla de socker som återfinns i lignocellulosa och därmed bli mer effektiva cellfabriker. I projektet har vi konstruerat alla de plasmider som behövs för metoden, och visat att den fungerar för att genom-modifiera industriella jäststammar. Vidare har vi producerat det genetiska material som behövs för att utveckla jästen till att metabolisera disackariden cellobios; ett viktigt socker i lignocellulosa-hydrolysat. I framtiden kan cellobios-jäsande jäststammar bidra till en ekonomiskt lönsam produktion av biobränslen och biokemikalier.
Author: Cecilia Geijer
The project reported here was based on the results from a previous ÅF-project. In the previous project the goal was to introduce the Enhanced Quality Control Process (E-QC) concept for traditional drugs based on small molecules (< 100 Da), such as LosecR and NexiumR and ViagraR. This previous project was based on the idea that if the company can prove they have achieved a deeper scientific knowledge about the underlying mechanism in the quality controll process it should simplify considerably the necessary continual improvement of regulatory approved QC methods without the today necessary tedious filing of papers to regulatory approved QC methods without the today necessary tedious filing of papers to regulatory authorities. We were extremely successful with this ÅF-project which resulted among others in a pioneer paper and in the first prize for best thesis 2017 and AstraZeneca has now implemented the concept Enhanced Quality Control Process (Enhanced -QC) for recently approved drug application for the anti-depressant MianserinR.
Author: Torgny Fornstedt
This project aims at unraveling the potential of an under-utilized by-product of technical processing of lignocellulosic biomass to pulp, namely lignin. Lignin is mostly produced through pulping of wood as a by-product and burnt to produce electricity to support the pulp mills. Lignin is the world’s leading renewable phenolic polymer, but despite this its use in different technical and chemical applications has only recently been studied. The heterogeneity in lignin molecular structure and size distribution has been one of the factors setting limitations to its application. For this reason, further refinement of lignin is required. Herein, it is in our interest to find new potential high value applications from lignin were the heterogeneity can be used as an advantage rather than viewed as a disadvantage. Recently, we exploited this heterogeneity to produce lignin-based spherical capsules and bowl-like shape capsules (unpublished results). In particular, the bowl-like structures are highly interesting and a direct consequence of the molecular weight of the lignin type used. The objectives in this proposal is to develop a facile production protocol, using different lignin types, to assemble lignin-based spherical and bowl-like capsule structures, which in the next step will be functionalized and/or carbonized. The focus is on structure-property relationships. Using lignin and wet chemistry should enable facile production protocol by utilizing the inherent properties of lignin. Such lignin-based spherical and bowl-like capsule structures are interesting (after additional functionalization) in a number of applications including energy-storage, catalysis, plasmonics and biomedical applications.
Author: Anna Hanner (Svagan)
Wheat straw and wheat bran are lignocellulosic residues derived from production and processing of wheat, the most produced crop in Sweden. The proposed project intends to evaluate a new approach for valorization of those residues mainly composed of cellulose, hemicellulose and lignin. Edible filamentous fungi, found naturally growing on lignocellulosic materials or in which cellulase activities have been identified, will be used for low-energy and water solid-state fermentation. The resulting three-dimensional structure formed by fungal filaments and structurally-modified lignocellulosic materials will be subjected to compression moulding at elevated temperature to obtain a solid material. The materials will be characterized by mechanical and thermal tests and the properties will be compared to commercially available materials used in construction, tableware, and decoration materials. The biodegradability of the new materials will be tested via anaerobic digestion for production of biogas. The proposed project will also focus on the production of enzymes (e.g. cellulases and xylanases) produced during growth of the filamentous fungi as a second value-added product of the solid-state fermentation. For instance, cellulases find applications in the brewery, textile and animal feed industries. Therefore, the project provides new insights into a new management route of agricultural residues where renewable and biodegradable products with application in variable industrial sectors are produced.
Author: Jorge Fernando Araújo Ferreira
This project aims at introduction of a new generation of chitin-chitosan fibers from fungal cell wall for possible use in textile and medical applications. Fungal chitin and chitosan are alternatives to those prepared from shellfish wastes. Chitosan-chitin fibers (obtained from shellfish resources) have already shown a good potential for medical applications for example for sutures, wound healing materials, and scaffold for tissue engineering. In this project edible strains of zygomycetes fungi will be grown in bread waste, one of the most important food wastes in Sweden in terms of production volume. Fungal cell wall fraction will be isolated and purified from the other components of the fungal cells namely proteins and lipids. A new wet spinning method will be developed for production of fibers from the chitin-chitosan fraction of the cell wall. The goal is to replace the toxic chemicals usually used in wet spinning of chitin fibers with a safe aqueous solvent. Preparation conditions will be optimized to get fibers with high strength that are suitable for e.g., sutures and textiles. Furthermore, antimicrobial properties and biodegradability of the fibers will be investigated and compared with those of commercially available fibers used in sutures and textiles. The biotechnology group of the Swedish Center for Resource Recovery has a long term experience in cultivation of fungi in different materials and application of fungal biomass as e.g., animal feed. Production of new bio-based materials e.g., superabsorbents and bioplastics, from zygomycetes fungi is another active going on research in this center. This project is a stepping stone towards deeper research in development of new biomaterials from fungal chitin-chitosan especially for medical applications.
Author: Akram Zamani
Den omfattande användningen av petroleumbaserade plaster i mängder av produkter skapar miljöproblem världen över. Lösningar för att ersätta dessa produkter med förnyelsebara och bionedbrytbara material som cellulosa är därför viktiga. Syftet med denna studie är att skapa ett ultralätt material från cellulosa, som skulle kunna användas på motsvarande sätt som petroleumbaserade polymerskum. Materialet kommer även ha funktionalitet för att selektivt kunna filtrera giftiga tungmetaller ur vattensystem. Studien angriper därigenom ytterligare ett miljöproblem. Utgångsmaterialet är nativ cellulosa från trä, upplöst i vattenbaserat lösningsmedel. Genom att blanda ned kelerande surfaktanter i cellulosalösningen, följt av kraftig omrörning, kan man skapa ett stabilt skum. Detta skum kan sedan regenereras till ett fast skum, som därefter torkas till ett ultralätt material, en så kallad aerogel. Genom detta förfarande skapas ett biobaserat och biologiskt nedbrytbart material med både intressant isolerande och mekaniska egenskaper samt komplexbindande funktionalitet. Olika tillsatsämnen för att optimera struktur och mekaniska egenskaper samt främja komplexbindande förmåga kommer testas, vidare kommer regenereringsförfaranden och torkningsprocesser att optimeras. Mittuniversitetet söker 620 000 SEK från stiftelsen Åforsk för denna studie, inga medel har sökts från annan finansiär.
Author: Ida Svanedal
The project mainly focused on nanoengineering of functional porous materials, e.g. metal-organic frameworks (MOFs), covalent organic frameworks (COFs), porous organic polymers (POPs), and porous carbons, by cellulose nanofibers (CNFs) for the development of their applications in energy and environment. CNF, a sustainable, renewable, and processable biopolymer was as the substrate to assemble and process porous materials for the preparation of freestanding nanocomposites via a bottomup nanoengineering approach. The synthesis, morphology, dimension, and alignment of the porous materials within the nanocomposites can be controlled at the nanoscale, with the purposes to regulate the overall properties of the hybrid nanomaterials and reach a fundamental understanding of the structure-function relationships. The obtained nanocomposites were studied in a wide range of applications, including flexible energy storage devices, thermal insulator, flame retardant, adsorption and separation, and solar thermal conversion and utilization. This study has overcome the longstanding challenges in processing, shaping and structuring porous material powders and to develop their practical applications. The project has also led to many promising research results and ten papers published in Energy & Environmental Science, ACS Nano, ACS Materials Letter, Carbon, Nano-Micro Letters, etc. We believe that the results from this project will not only contribute to the fundamental research in nanocellulose, porous materials, and hybrid nanomaterials, but also would greatly promote the development of their practical applications. The research results are divided into the following five parts
Author: Chao Xu
The project was set to start with recruitment of a postdoctoral fellow, which ended up being a lengthy process, as the selected candidates of two recruitment rounds declined the offer due to pandemic related issues. Meanwhile, the work was started by the PI and a PhD student and postdoc in the lab, whose research is related to the project. After some Covid and visa related delay, Dr BoHyun Choi started at the end of May 2021. As the work still continues (with funding from FORMAS) and is expected to result in in at least one high impact publication, experimental detail is kept to a minimum when the results are summarized in relation to the project plan.
Author: Yvonne Nygård
The goal of this project has been to, based on the recently discovered CO2-chemistry of cellulose solutions in NaOH(aq), investigate the possibilities of governing cellulose re-assocation behavior by employing its interactions with CO2. The CO2 chemistry of cellulose/NaOH(aq) entails incorporation of CO2(g) in cellulose/NaOH(aq) through a specific react on with partly deprotonated cellulose leading to formation of transient cellulose carbonate intermediate capable of affecting cellulose reassembly from the solution (as observed in the previous preliminary studies). The mechanism and conditions governing this reassembly are not resolved and have been in focus of this project.
Author: Merima Hasani
The spread and accumulation of persistent organic pollutants (POPs), has become a major concern to human health and surrounding environment. Adsorption is considered a promising technique for their removal, owing to its low cost, environmentally friendliness, easy operation and possibilities of recycling the adsorbent materials. Novel adsorbents are actively developed for removal of organic and inorganic pollutants from water and wastewater treatment systems. Fly ash, derived from waste incineration, has great potential in environmental applications, solving both its disposal problems and offering a cheaper material for adsorption of water pollutants. It is rich in silicon, making it a valuable source for synthesizing mesoporous silica materials (MSM), with large surface area and well-ordered uniform pores, having adjustable pore size. Incorporation of organic ligands and enzymes into MSM can further increase selective adsorption capacity and biochemical degradation of POPs. Few studies are reported to date on using fly ash derived mesoporous materials for immobilization of organic ligands and enzymes and their applications in WWT. The main objective of this project is synthesizing mesoporous silica biocatalysts from autocatalytic non-expensive raw materials and testing the key factors in removal of selected POPs from water.
Author: Ani Vardanyan
An urgent concern of society is to reduce the consumption of fossil materials and the pollution of the environment by plastics. This project tackles the main bottlenecks in expanding the use of environmentally friendly, renewable materials, e.g. in the packaging and construction sectors, where plastics and concrete currently dominate. The aim of this project is to fundamentally identify why lignin-rich cellulosic materials acquire impressive material properties, with an emphasis on wet strength, after treatment with high temperatures and pressures. With increased wet strength, combined with high gas barrier properties of cellulose, it is possible to produce renewable products with properties similar to plastics. The project will (1) determine the structural composition of lignin at high temperatures (before and after treatment), (2) experimentally determine the optimal pressing and temperature levels, and (3) create a theoretical model. What is unique about this project is that the methods used to understand the phenomena have not been used in this combined way before. These methods will be used to describe in detail why improved properties of the material are observed by focusing on what happens to the lignin. A fundamental understanding of this phenomenon has yet to be developed.
Author: Amanda Mattsson
The optical absorption behavior of ZnO quantum dots has been investigated as a function of particle size in the quantum confined regime, between 4 and 9 nm in diameter, by using photoelectrochemical methods. Thin films of quantum dots, with 18 different sizes, were prepared on conducting substrates where the Fermi level could be controlled potentiostatically simultaneously as absorption measurements were performed. While raising the Fermi level into the conduction band, the dominant effect is a decrease in absorption as a consequence of increased electron population in the conduction band. This is a potentiostatic analogue to the Burstein-Moss shift for degenerate semiconductors,. For applied potentials in an interval of 0.2 eV below the conduction band edge, the absorption does, however, increases instead of decreases.
Author: Tomas Edvinsson
Detection of the blade root moment sensor failures is an important problem for fault tolerant individual pitch control, which plays a key role in reduction of uneven blade loads of large wind turbines. A new method for detection of the blade root moment sensor failuers which is based on variations induced by a vertical wind shear is described in this report. The detection is associated with monitoring of statistical properties of the difference between amplitudes of the first harmonic of the blade load, which is calculated in two different ways. The first method is based on processing of the load sensor signal, which contains a number of harmonics. The first harmonic is recovered via least squares estimation of the blade load signal with harmonic regressor and SDD (Strictly Diagonally Dominant) information matrix.
Author: Alexander Stotsky
Summary: In order to solve the energy and environmental problems such as the exhaustion of traditional fossil fuels, and ever more evident environmental impact of air pollutants and CO2, both academic and industrial research efforts in finding alternate renewable energy sources are dramatically increased over the last decades. The photoelectrochemical (PEC) water splitting into solar fuels such as H2 and methanol using sunlight has attracted much attention because of its potential to use the abundance of solar energy and water on Earth. This project focuses on development of SiC materials as the photoelectrode to convert solar energy into chemical fuels. In this project, we have built a solar water splitting measurement setup and a PhD student has participated in the project and has received his PhD degree on 2019-09-12. Moreover, a postdoc researcher has been recruited and has been working in this project since 2017-09-01. We have successfully fabricated high-quality C-face and Siface 3C-SiC, graphene on 3C-SiC, nanostructured 3C-SiC and demonstrated their promising properties on solar-to-fuel conversion (see the PhD dissertation and publication list below). In particular, we have demonstrated that the bottleneck of photoelectrochemical water oxidation can be overcome via atomic manipulation of proton transfer on the polar surfaces of SiC photoanodes. Furthermore, we improved the solar water splitting efficiency by introducing electrocatalytic and p-type NiO nanoclusters on an n-type cubic silicon carbide (3C-SiC) photoanode. Under AM1.5G 100 mW/cm2 illumination, the nanostructured NiO-coated 3C-SiC photoanode exhibits a significantly increased photocurrent and photovoltage together with decreased onset potentials. More detailed results have been published in Yuchen Shi’s PhD and our papers (see below).
Author: Jianwu Sun
The project aimed at developing the use cyanobacteria for the renewable production of industrially interesting hydrocarbons that can be used as fuels or for chemical synthesis, and there replacing organic substances produced from oil. One problem with using microorganisms for the production of hydrocarbons is that if they often do not is spontaneously secreted from the cells, but must be extracted from the biomass. The purpose of this project has therefore been to investigate and improve the transport of such substances out of the cells in various ways. The model organism we have chosen to work with is the unicellular cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis)
Author: Pia lindberg
The aim of this project has been to investigate the opportunities to engineer the yeast Yarrowia lipolytica for usage as a biocatalyst in a process where renewable electricity is converted into biodiesel. This process involves the production of acetate from CO2 and electrolysed water via microbial electrosynthesis (MES), and the subsequent conversion of acetate to biodiesel by Y.lipolytica. Within this project the production of biodiesel from acetage will be improved by metabolic engineering of Y.lipolytica. This will result in a more efficient production of biodiesel and will make the production of biodiesel from electricity more feasible process.
Author: Eduard Kerkhoven
In this project a topology optimization framework for designing periodic viscoplastic microstructures under finite deformation has been developed. Microstructures with tailored macroscopic mechanical properties, i.e. maximum viscoplastic energy absorption and prescribed Poisson’s ratio, are designed by performing numerical tests of a single unit cell subjected to periodic boundary conditions. The applicability of the framework is demonstrated by several numerical examples of optimized two-dimensional continuum structures exposed to multiple load cases over a wide range of macroscopic strains. The results has been presented at ”The 13th World Congress in Computational Mechanics, New York, July 2018” and the results are currently being prepared for journal publication.
Author: Margareta Linnarsson
In the continuous strive for a more sustainable world, the ability to make heavy constructions lighter in weight has a key role. Weight reduction, for example in the vehicle industry, will result in increased payload and through this, less fuel consumption and greenhouse gas emissions. The main reason to choose high strength steels (HSS) is to allow for higher stresses and reduced dimensions, taking benefit of higher strength steels with respect to the yield criterion. The industrial problem in this area is that traditionally it has been impossible to increase the fatigue properties of welded structures, even if steels of higher strength are used. However, with the latest developments, especially using high frequency mechanical impact (HFMI) to treat the weld toes and use of special welding consumables so-called Low Transformation Temperature (LTT) filler materials, it has been shown that an increasing fatigue strength has also been possible to achieve, with increasing yield strength of the steel, up to 960 MPa. Although it has been shown that use of HFMI treatment or LTT fillers are successful for increasing the fatigue properties there still exist many challenges to use these approaches industrially. The aim of the present project is to, in a critical manner, study the two improvement techniques, in order to increase understanding of the factors that control fatigue life of welded high strength steels and to help the industry in selecting the most optimal procedure. To achieve this, cruciform welded samples will be produced using LTT and conventional welding consumables in 1100 MPa and 1300 MPa yield strength steels with a plate thickness of 15 mm. Some of the welded samples will then be HFMI treated. Residual stresses in as-welded condition and after application of HFMI will be evaluated using X-ray diffraction. Fatigue testing under constant and variable amplitude loading will be performed under stress ratio of 0.5.
Author: Ebrahim Harati
The aim of this project is to set-up in-operando Fourier transform infrared (FTIR) spectrometer to analyze products formed via electrochemical reactions. This advanced characterization technique will be used to investigate interfacial reactions in rechargeable lithium (Li) and sodium (Na) ion batteries. The setup is planned to be placed at our research lab at Uppsala University, where we lack such analytical technique to study air-sensitive components such as electrode and electrolyte materials used in batteries in operando mode. I believe results obtained from such setup will have important impact to obtain a deep understanding of interfacial reactions occurring at the interfaces between the electrolyte and the electrodes. In particular, FTIR spectroscopy as a complementary technique to other analytical techniques that we are currently using (e.g. X-ray photoelectron spectroscopy and X-ray diffraction) will enable us to have a better picture of chemical and electrochemical reactions at the interfaces in rechargeable batteries.
Author: Reza Younesi
NEPP – Nordeuropeiska energiperspektiv (North European Energy Perspectives Project) är ett multidisciplinärt forskningsprogram med definierade forskare och definierade forskningsfrågor. NEPP fungerar som ett sammanhållande forskningskluster kring flera pågående och nya forskningsprogram och projekt. För NEPP gäller att verksamheten ska: - Bidra till att ge energiföretagen, myndigheter, politiker och kunderna på energimarknaderna ingående kunskap om de utmaningar och möjligheter som väntar inom energiområdet - Bidra till att bättre underbygga de energipolitiska besluten nationellt och internationellt - Bidra med kunskap som kan läggas till grund för investeringsbeslut inom energiområdet - Skapa erkända mötesplatser (forum) för faktabaserad dialog mellan energiföretagen, politiker, myndigheter, forskare och energimarknadernas kunder - Stärka forskningssamarbetet och kunskapsöverfö¬ringen mellan forskare i Norden och Nordeuropa. Tyngdpunkten i NEPP ligger vid synteser i ett systemperspektiv. NEPP har som mål att fördjupa kunskaperna om: - Utvecklingen av Sveriges och Nordens energisystem – i perspektiven 2020, 2030 samt mot 2050 – som resultat av förändringsfaktorer, t.ex. Sveriges och EU:s energi- och klimatpolitik. - Utvecklingen av energisystemen på regional och lokal nivå som en följd av centrala förändringsfaktorer på nationell och internationell nivå. - Kostnadseffektiva vägval och nödvändiga åtgärder som måste till för att nå uppsatta mål. - De samhällsekonomiska effekterna samt möjligheterna och utmaningarna för energisystemens aktörer av planerade förändringar och redan fattade beslut.
Author: Stefan Montin
Högfluorerade ämnen, eller PFAS, är en typ av kemikalier som används i ett stort antal produkter, exv som fettavvisande beläggning på papper och livsmedelsförpackningar, i rengöringsmedel, brandskum, och som hjälpkemikalie vid tillverkningen av polymeren polytetrafluoretylen (PTFE/Teflon). Det mest kända exemplet är PFOS (perfluoroktansulfonat) som är förbjuden inom EU. PFOS ingår även i Stockholmskonventionen för persistenta organiska miljögifter samt i FNs luftvårdskonvention. Detta har medfört att användningen av PFOS minskat, även om det fortfarande tillverkas. När de PFAS-innehållande produkterna nått slutet av sin livslängd hamnar de i avfall som skickas till avfallsförbränning. Vad som sker med dessa ämnen i förbränningsprocessen är dock inte klarlagt, och inte heller vilken risk som föreligger för lakning av PFAS från avfallsupplag och spridning till omgivningen. Denna ansökan omfattar driftsmedel för en delstudie inom ett doktorandprojekt som utförs vid Umeå universitet, i nära samarbete med Umeå Energi. Lönemedlen är täckta men för att kunna utföra delstudien i den omfattning vi avser krävs 300 kkr för att täcka kostnader för experimentuppställningar och analyser.
Author: Stina Jansson
The project aims to provide a new tool for enabling engineers to model the cleaning of exhaust gases from sulfur and nitrogen oxides by conversion into airborne ammonium sulfate and nitrate particles, which can be subsequently removed by filtration. We will adapt existing state-of-the-art models applied within atmospheric sciences, and extend them for handling exhaust gas conditions. Aerosol models used in climate research are able to capture the formation and growth of atmospheric particles from vapors, but they have not been exploited in engineering applications. We wish to leverage these tools to empower engineers and find new solutions to mitigate harmful emissions. The main goals of the project are: 1) To develop novel and freely available models to predict aerosol particle formation and growth in exhaust flue gas conditions. 2) To map the ideal operating conditions for a gas cleaning unit, including optimizing the particle formation efficiency, and ensuring sufficient conversion of pollutants into collectable particulate matter. This will involve active discussion and collaboration with experimental scientists.
Author: Tinja Olenius
The project is planned for three years starting from 2019.01. It will be carried out at the Department of Energy Sciences, Lund University. The applicant and one PhD student will be mainly engaged in the project. The high heat transfer rates during boiling, utilizing the large latent heat, are essential to various energy and industrial applications such as power generation, refrigeration and air-conditioning, power plants, chemical processing, waste heat recovery; but boiling is inherently associated with relatively low thermodynamic efficiencies and limited by the occurrence of critical heat flux. Besides, with increasing heat loads of continuously shrinking semiconductor devices and chips (e.g., biochips), there is an urgent need for innovative and compact thermal management schemes for solving tough high-power electronics cooling challenges or tailoring rapid local temperature control of biomedical and pharmaceutical applications. The effectiveness of boiling can be largely enhanced through careful control of the chemico-physical characteristics of the heat transfer surface. This project aims to enhance boiling heat transfer by cost-effective nano- and hybrid nano/microstructured surfaces and to further reveal the underlying heat transfer mechanisms based on coupled experimental and theoretical analyses. New scientific knowledge frontier, in terms of multiscale surface features to address the multiple length scales associated with boiling phenomenon, is expected. As advanced surface engineering, micro/nanostructured surfaces targeted in this project for boiling heat transfer represent next-generation heat transfer technology that can be implemented either by retrofitting existing technological needs or in catalyzing implementation of future renewable energy systems and a green environment.
Author: Zan Wu
This project aims to explore a novel method for efficient conversion CO2 in the forms of value fuels (CH4, CH3OH, HCOOH) via the harnessing of abundant and clean solar energy. We will design the system using silicon carbide (SiC) electrode, a well-known environment-friendly and industrialized semiconductor, as the potential applicable photoelectrode. Via rationally engineering the atomistic surface structure of SiC, including exposing active polar surface, hybridizing its surface with conductive graphene/cocatalysts, and introducing carbon vacancy, efficient conversion of CO2 to solar fuels with desirable reactivity and selectivity will be explored. Our society highly depends on the use of fossil fuels, which results in the global warming due to increasing atmospheric CO2. The reduction of CO2 in terms of producing fuels will be an expedient accomplishment to address the clime change problems. However, conversion of CO2 still exhibits dissatisfactory quantum yield. In most cases, poor absorption of semiconductors to visible light, which accounts for about 47% of solar irradiance, and robust charge carriers recombination within semiconductors, account for the poor solar energy conversion efficiency. It has been demonstrated that surface structure of photocatalysts indeed determines the conversion efficiency as compared with the bulk structure and composition. To improve the solar CO2 reduction efficiency, this project mainly focuses on atomic design of the surface structure of photoelectrode along with the modern material characterization techniques and electronic structure computations.
Author: Hao Li
Projektets syfte är att utvärdera en innovativ metod för att minska korrosionsproblem på överhettartuber i ångpannor som eldar fasta biobaserade bränslen. Problemen med överhettarkorrosion kan ofta härledas till förekomsten av alkaliklorider i den beläggning som bildas på tuberna. Tidigare experiment har visat att klor drivs ut från bildade beläggningar på överhettartuber relativt omgående om materialets temperatur ökar uppemot 700°C. När materialet sedan kyls till ordinarie temperatur (typiskt 500-550°C) så börjar klor återigen samlas i beläggningen, men till en lägre hastighet än initialt. Frågan är om kloret som åter ansamlas på beläggningen efter en temperaturpuls företrädelsevis fastnar i beläggningens ytterskikt. Om så är fallet kommer kloret inte att vara aktivt i korrosionsangrepp på tubmaterialet, vilket medför att förutsättningen för överhettarkorrosion minskar kraftigt. Följaktligen skulle tubernas beläggningar kunna renas från aggressiva klorföreningar genom kortvariga regelbundna temperaturökningar. I praktiken skulle dessa temperaturökningar kunna ske genom att det kylande ångflödet genom tuberna stryps, i några av tuberna åt gången, utan att öka ångtrycket. Föreliggande projektförslag syftar till att experimentellt prova om denna typ av temperaturpulser har potential att betydligt minska korrosionsangreppen på överhettartuber. Det skulle i så fall möjliggöra förhöjda ångdata och/eller ökad materiallivslängd för överhettare.
Author: Fredrik Niklasson
Dagens ansatser för planering av skogsbruk baseras i de flesta fall på att skogen delas in i homogena områden, s.k. avdelningar om 1-10 hektar, som sedan beskrivs med medelvärden för avdelningen, t.ex. ålder, stamvolym, trädhöjd, etc. Man antar i planeringen att samma typ av skötsel appliceras på hela avdelningen, dvs. beskrivningseneheten är synonym med åtgärdsenheten. Detta förfarande är utarbetat för förhållanden när detaljerade skogliga data var svåra att producera och lagra. Det var helt enkelt inte möjligt att beskriva skogen på annat sätt. I dag kan dock skogen beskrivas mycket mer detaljerat. Tekniska framsteg som gjorts inom fjärranalys möjliggör att man nu med t.ex. flygburen laserskanning kan beskriva skogen i mindre områden (12*12 meters pixlar) i stället för att endast beskriva skogen i medeltal inom avdelningar. Detta kan ge stora ekonomiska och ekologiska vinster då skogsbruket skulle kunna anpassas till den naturliga variation som finns i landskapet, alltså ett steg mot ett precisionsskogsbruk istället för dagens schablonartade skogsbruk. Tyvärr finns i dag inga planeringsmodeller som kan användas i skogsbruket som till fullo utnyttjar dessa nya möjligheter. I detta forskningsprojekt föreslås därför planeringsansatser för målanpassade åtgärdsenheter helt fria från det hittillsvarande statiska avdelningsbegreppet. Syftet med projekt är att utveckla en planeringsansats för skogsbruk med hög hänsyn till både ekonomiska, ekologiska och sociala värden baserad på dynamiska åtgärdsenheter. De dynamiska åtgärdsenheterna är en funktion av ägarens mål och baseras på pixelvisa beskrivningar av skogslandskapet. Till skillnad från de traditionella statiska avdelningar när indelningen är permanent över hela planeringshorisonten så kan dessa dynamiska åtgärdsenheter förändras över tid samt anpassas till ägarens målsättningar.
Author: Karin Öhman
Projektet syftar till att undersöka vilken inverkan på det globala strukturella beteendet det medför att använda fraktioner av återvunnen betongkross i armerade betongkomponenter inom transportinfrastruktur. Inom projektet utförs experimentella försök både på materiell och strukturell nivå för att erhålla en fördjupad förståelse för de utvecklade kompositmaterialens mekaniska egenskaper. Projektet avser påvisa potentialen av att använda återvunnen betongkross i en strukturell betongprodukt vilket anses vara en ansvarsfull användning av materialresurser och en innovativ produktförädling jämfört med nuvarande användningen av betongkross som ett ”återvunnit material”. Projektet kommer att vara ett samarbete mellan forskningsinstitut (RISE), akademi (Chalmers) samt industriella partner (Thomas Concrete Group) som är aktiva inom Sveriges infrastrukturindustri.
Author: Natalie Leonor Portal
Development of wood based biorefinery processes are central to replacing fossil raw materials, as oil and gas, for the sustainable production of materials, chemicals and fuel. To utilize the biomaterial efficiently extensive degradation should be avoided and wood constituents in the form of both particles as well as dissolved polymers and macromolecules needs to be recovered. This requires the use of selective and cost-efficient separation methods as process streams will contain heterogenetic mixtures of constituents which will limit the value and usability of the components. Here membrane filtration is going to be a key operation. As a pressure driven operation it is potentially a very energy efficient method that can be used to concentrate, fractionate and purify extracted components enabling utilisation in high value applications. One of the largest challenge when using membranes for separation is fouling and these fouling problems can be expected to very severe for the streams in the biorefinery. This 13 month postdoc project aims to apply a new method still under development, fluid dynamic gauging (FDG), to investigate how process parameters can be utilised to decrease the effect of surface fouling. The project will focus on membrane separation in a system where fouling poses a central challenge: recovery of high molecular weight hemicellulose from extraction streams containing mixtures of wood components. FDG will be used in-situ during membrane operations at varying process conditions to investigate fouling layer thickness as well as cohesive and adhesive strength. These characteristics will then be used to develop antifouling strategies which will be evaluated. The project contributes towards a more efficient separation and recovery of high molecular weight hemicellulose, which can be used e.g. for barrier films, but it also builds a methodology and develops tools that will be valuable investigation of other membrane fouling issues within the biorefinery.
Author: Tuve Mattsson
Life cycle assessment (LCA) is a widely used environmental assessment tool. However, only a small share of efforts have been made to extend communication. researchers, practitioners, and their targeted audiences have divergent needs and knowledge for using and communicating the information provided from LCAs. As such communication efforts are needed to transparently and coherently identify how LCA can be used and how to interpret the results. The goal of the study is to provide insight and guidance on improved communication of LCA results. The goal is approached, on the one hand, by exploring how LCA results presently are communicated, and on the other, by
Author: Frida Røyne
The ongoing LINKIP research project (funded by the EU-Marie Sklodowska-Curie Action, Individual Fellowship) has the aim of a development of a new geophysical research approach for characterising the subsurface for groundwater management and protection purposes. The main objective of this project is to assess how enhanced spectral resolution in DCIP (Direct Current Induced Polarization) data can be used to better characterize the subsurface with the newest optimized data acquisition hardware in combination with the latest developments in data processing algorithms. For that, both geophysical methods, Spectral Induced Polarization (SIP) and Time Domain Induced Polarization (TDIP) should be linked together (LINK IP). With the knowledge of the link between the spectral information in TDIP and hydraulic properties the results will give a very valuable tool for mapping drinking water and its vulnerability, and further important applications (e.g. contaminations, landfill, mineral exploration, non-destructive testing of building materials and wood, etc.). To enhance these studies far-reaching field experiments are planned together with international partners from Austria and Germany. Due to the broader expertise and the additional instruments and processing algorithms a systematic comparison of the both methods can be carried out. For that comparison two test sites with different geological setting were chosen to validate the new geophysical research approach. Furthermore, to verify the geophysical data, also a few drilling points are planned at the Swedish test site. The results are of big interest for the international research community, and in particularly for the LINKIP project, as well as for practitioners. The first results will be presented at the 5th international IP workshop in October 2018 at Rutgers University, USA. The joint results from both experiments will be published in a peer review paper.
Author: Tina Martin
Abstract: Water resource plays an important role in the development of human life. Moreover, there is an increase in the need to the freshwater due to increase in human population. The global human population will reach 9.6 billion by the year 2050 thus; there will further increase in freshwater demand for different activities such as human use, agriculture, industry. Thus, we need to consume water more efficiently as well develop new methods to earn fresh water. In this vein, researchers are looking at the wastewaters as a potential source of water for agriculture. However, wastewater is a source of pollutants such as industrial dyes, heavy metals and pharmaceutically active compounds (PhACs) which can be harmful. In the last fifteen years, PhACs and especially antibiotics have been receiving increasing attention as contaminants which can affect water quality, ecosystem, and human health. Lindberg et.al at Umeå University (2004-2006), have investigated a hospital effluent and sludge from five sewage treatment plants across Sweden by new analytical methods. The results indicated high levels of different antibiotics in the hospital effluent as well sewage treatment plants. A variety of methods like physical separation including membrane separation, adsorption and also their combinational processes have been complimented for removal of pollutants. In adsorption method, the pollutants are adsorbed on the surface of adsorbent where membrane separation is based on the exclusion or electrostatic repulsion between the membrane and the pollutant compounds. The objective of this study is to develop new material/technologies for selective removal of PhACs like antibiotics. In this vein, hydrogel and ceramic based membranes will be developed and the possibility of using these materials as adsorbent or membrane process will be investigated. The developed scaffolds will be tested by the model antibiotics as well industrial wastewater from the pharmaceutical industry.
Author: Dariush Nikjoo
In this study, the challenges related to the surface quality of 3D printed materials are addressed. Additive Manufacturing (AM) is a technology that builds objects by using a 3D modeling software and is predicted to grow significantly due to the market demands for customizing products, sustainability, reducing manufacturing cost, time and energy consumption as well as carbon footprint. Despite all these advantages there are some drawbacks and shortcoming including poor surface quality in this process that must be solved to keep AM competitive with other technologies. The rapid cooling rates and directional solidification in AM processing, result in different material microstructure from its cast and wrought counterparts. Anisotropic and non-equilibrium microstructures and metallurgical defects as well as porosity are microstructural features of AM materials which have their own impact on corrosion resistance. Therefore, understanding the principle of AM, its application and implication is necessary to overcome the barriers for its rapid adoption. This study focused on maraging steel which is a promising material for dies and moulding tool applications. Hence, its surface quality must be improved. On the other hand, corrosion resistance is one of the most important properties for industrial application and maraging steel has demonstrated good corrosion resistance which may influenced by 3D processing. In this order, electropolishing as an interesting candidate was chosen and its effect on surface topography of 3D maraging steel will be discussed. However, electropolishing of maraging steel due to their special microstructure characteristics has also many challenges. Therefore, different parameters will be checked to find out the optimized conditions. In addition, corrosion resistance of 3D printed maraging steel in as built and aged structure will also be studied to find out if 3D sample preserves the same good corrosion properties as conventional one.
Author: Donya Ahmadkhaniha
Laboratory tests for high temperature corrosion are great tools in order to evaluate material behaviour in different gas atmospheres. Most exposures in laboratory are, however, performed isothermal and the actual situation in for instance a boiler is often that the metals are cooler than the flue gas at places where the most corrosion problems are observed. In order to better simulate the field in laboratory, test method development is needed. In this project, a cooled laboratory probe similar to probes used in field tests will be constructed. By using a cooled laboratory probe, process parameters can be tested in laboratory. It is not always easy to test, for instance, different process parameters in a field test since this will affect the whole boiler during the test. Performing more tests in laboratory can give input data to how process parameters can be tested in a final field test with less risk for the boiler during the test. More and faster laboratory tests could thus result in less and safer field test needed for evaluating a change of process parameters. The overall objective of the project is to create a solution for performing laboratory tests as a complement to field exposures in the combustion industry. Enabling this kind of test method, process parameters like different flue gas composition, temperatures and deposit composition can be tested in laboratory and decrease the number of field exposures needed.
Author: Annika Talus
The purpose of the project has been to investigate the influence of hydrogen on the mechanical properties of metals which are used for hydrogen driven transport in energy technology. The study involves intensive experimental studies and continued implementation of the theoretical framework.
Author: Wureguli Reheman
Turbulens är ett strömningstillstånd vars frågor gäckat forskare under flera decennier. Turbulent strömning är minst sagt komplex och kan beskrivas med termer som oordning, kaos och oförutsägbarhet. Turbulens anses även utgöra ett av den klassiska fysikens ännu olösta problem. Förståelsen för turbulens är dessutom vital i många tekniska sammanhang, som när man exempelvis vill beräkna strömningsmotstånd på farkoster eller förstå hur man bäst utformar en vindkraftspark, men även hur väder och vind kan förutspås. Turbulens är även centralt för värmeöverföring, som sker i exempelvis värmeväxlare, och för olika typer av omblandningar inom processindustrin. Strömningsfysiklaboratoriet på Institutionen för Mekanik på KTH bedriver världsledande experimentell grundforskning inom bland annat turbulens. För att kunna tackla turbulensens gåtor krävs det att man gör fler experiment vid höga Reynolds tal, som ofta kan likställas med höga hastigheter och små längd- och tidsskalor. För att kunna göra avancerade hastighetsmätningar i turbulent strömning har vi nyligen skaffat oss ett optiskt mätsystem med så pass specifika egenskaper att det kan anses vara unikt. Inköpet möjliggjordes genom infrastrukturanslaget MUSCLE från Wallenbergs stiftelse. Genom ett anslag från Vetenskapsrådet (HIRETURN, 2018-2020) har vi finansiering för att göra mätningar i CICLoPE, som är beläget utanför Bologna. CICLoPE är en ny vindtunnelfacilitet med förutsättning att kunna ge svar på frågor vi sökt i årtionden. För att kunna maximera Sveriges vetenskapliga bidrag till forskningssamfundet inom turbulens ämnar vi designa och konstruera ÅForsk-NEWS, som står för New Experimental Wind-tunnel Setup. Denna specialtillverkade mätsträcka, som även instrumenteras, kalibreras och testas på KTH innan transport mot Bologna, kommer att möjliggöra mätningar som tidigare aldrig gjorts och därmed kunna få ett stort genomslag inom forskarvärlden.
Author: Jens Fransson
During the last decades the concentrations of Dissolved Organic Carbon (DOC) has been increasing in Sweden. The exact reason for this increase is still not fully understood, but it is known that the increase is due to increased DOC export from terrestrial systems. As the increases in DOC have been linked with the reduction of water quality, it is crucial to know how future environmental changes in the boreal region will affect the export of DOC from land to water. However, at the moment spatial and temporal dynamics are not yet fully understood, hampering efforts for accurate predictions. Our view is that at least part of this problem lies in the fact that litter is often ignored as a credible DOC source in boreal waters. In previous studies we have shown that DOC production from litter is quite substantial in the boreal forest, but the question remains whether or not this carbon is exported to the stream network. Here we argue that the production of DOC from litter is due to its high production potential, seasonality and landscape variability a likely candidate for driving spatial-temporal DOC dynamics. By using the trusted 13C mixed modelling technique with new knowledge from our previous research we set out to investigate the relative contribution of litter derived DOC compared to DOC originating from peat soils within the aquatic system of the boreal forest. Our project consists of a year long seasonal study where water samples are taken from different streams in a boreal catchment in northern Sweden and then analyzed in detail on DOC, decay of DOC, chemistry, bacterial production among other parameters. The dataset this will yield will provide detailed insights into spatial and temporal variations in bacterial growth, bacterial efficiency, bacterial substrate preferences as well as the quality, quantity and source of the DOC within boreal streams. This in turn will help increase our understanding of spatial-temporal DOC dynamics.
Author: Geert Hensgens
The purpose of the proposed project is to develop a new energy efficient, sustainable and profitable process for producing gaseous silicon compounds and solid silicon from industrial waste. The process is based on solvent extraction of fluorosilicic acid (FSA) and subsequent decomposition to silicon tetrafluoride (SiF4), which is then converted to valuable monosilane (SiH4). The gaseous silicon compounds (SiF4 and SiH4) will have sufficient purity (solar grade, at least 99.9999%) for use in the manufacturing of solar cells in existing processes. The compounds can be used for solar cells in the form of thin films (produced by CVD from SiH4) or wafers (by melting the polysilicon obtained by decomposition of SiH4). The costs and energy use of the new process will be much lower than for current processes enabling solar electricity to compete with electricity produced from fossil fuel. The new process can probably also be used to produce materials with electronic grade (at least 99.999999%). In the present application, funding is sought for the development of a packed bed for stripping FSA with fuming sulfuric acid. The activities will take place during the period 2018/07/01-2020/12/31.
Author: Johanne Mouzon
Syftet med föreliggande projekt är att undersöka orsaker till och konsekvenser av algblomningar av arten Gonyostomum semen ("gubbslem"). Denna typ av algblomning ökar i svenska vatten men dess orsaker och konsekvenser är fortfarande i stor utsträckning okända. I detta projekt vill vi testa hypotesen att förekomsten av dessa algblomningar gynnas av ökande järnkoncentrationer i sjövatten. Denna hypotes kommer vi att testa i form av laboratorieförsök där tillväxen kommer att undersökas vid tillsats av järn i olika koncentrationer. En alternativ förklaring som kommer att undersökas med hjälp av fältstudier är att transporten av celler från våtmarker i sjöars tillrinningsområden bidrar till algblomningarna. Konsekvenserna av den här typen av algblomningar kan vara direkta i form av försämrad drickvatten- och badvattenkvalitet eftersom algerna bildar ett slem som kan ge upphov till hudirritationer. Hur stora dessa problem är är ännu okänt och därför kommer vi att i form av en enkät ställd till vattenverk, kommuner och länsstyrelser undersökan omfattningen av det här problemet. Algblomingarna kan dock också ha "positiva" effekter i form av minskad avgång av växthusgaser från sjöar till atmosfären. Genom fältförsök kommer vi därför att undersöka vad som händer med växthusgaserna i sjöar under perioder av kraftiga algblomningar. Ett bidrag till lönemedel till en doktorandtjänst till detta projekt har tidigare givits av Stiftelsen Oscar och Lili Lamms minne och denna ansökan avser därför medel för materialkostnader och resor.
Author: Eva Lindström
In this project, an intelligent estimator for the State-of-Charge (SOC) of a Lithium-ion (Li-ion) battery for electric off-road vehicles (for mining and tunneling applications) is developed by means of Artificial Neural Networks (ANNs). A Feed-forward Neural Network (FFNN) model is proposed to predict the SOC for a Li-ion battery pack of a mining vehicle. The suitability of the developed FFNN-based SOC estimator is analyzed for the experimentally recorded data, as well as for data that were not previously seen by the network.
Author: Jelena Andric
Global warming due to emission of carbon dioxide has the recent years become an obvious threat to our future societies. To reduce the emission of carbon dioxide there is a need to significantly extend the use of renewable energy. In this project we will make a new concept for how solar cells can be utilized in a city at large scale. With new flexible and semitransparent solar cell techniques, solar cells can be placed on many different areas, for example windows, facades, car-parking areas etc., for a complete integration in the city environment without reducing esthetical values and also to a low cost. Through this large scale integration of solar energy, the city may to a large extent be self-sustainable in energy, which also make the energy system more robust. In the project we will make a conceptual example of a city with solar cells integrated to a large extent in the built environment and we will simulate the consequences on the electricity production, and see how the solar cells and local energy storage will affect the electricity system. A second part of the project is to perform research to achieve new flexible and semitransparent solar cells that would fit the different needs that is found in the environment in the city. In our previous solar cell research we have started to develop both semitransparent and flexible solar cells, and in this project we will take these solar cells to higher levels of efficiency and stability and fit their visual appearance to what we find most important in the city environment.
Author: Erik Johansson
With the help from the funding, the two major steps of the project have been achieved: 1. A three-electrode cell setup that preserves the electrochemical properties of twoelectrode full-size cells with the same experimental parameters 2. A cell design for operando diffraction and/or spectroscopic measurements that preserves the electrochemical properties of two-electrode full-size cells with minimum adjustment in experimental parameters Although a combination of both cell setups has not been realised yet due to the lack of a suitable cell holder on the X-ray diffractometer, the combination should be straight-forward since both setups are based on commercial coin cells, with modifications in different parts of the coin cells. The results from the two above-mentioned steps will be elaborated in the following section.
Author: Matthew Lacey
Sodium lignosulfonate (LgSA) was tested as a binder for hard carbon anodes in sodium-ion batteries. It was compared with lignin (Lg), carboxymethyl cellulose (CMC), and alginate (Alg) binders, all of which apart from lignin are water-soluble. Electrochemical data demonstrates that LgSA appears to perform better even than CMC in three-electrode half-cells for both tested electrolytes 1 M NaPF6 in PC or EC/DEC. The performance tends to be more stable in EC/DEC based electrolytes particularly for full cells, where the sodium metal counter electrode was replaced with a Prussian White cathode. Initial XPS results indicate a complex multilayered SEI structure, which is dynamic in nature during discharge-charge cycling. It was found that mixing the LgSA with SBR results in an even greater performance for both electrolytes with a reasonable Coulombic efficiency. It is planned for at least one scientific article to be published from this work.
Author: Andrew Naylor
Utilization of semiconductor nanowires (NWs) in light emitting devices and solar cells promises to improve device efficiency while decreasing material consumption and costs. This project suggests utilizing novel highly-mismatched III-V alloys in the NW architecture for further boosting device performance. Our specific aims are: 1) to understand key material-related parameters of novel nanowires (NWs) from highly mismatched semiconductors (such as dilute nitrides and dilute bismides), and their dependence on structural design; 2) to gain general knowledge on unknown fundamental properties of different crystal polytypes of such NWs, to exploit band structure engineering, and to explore spin-enabling new functionality for potential applications in optoelectronics and photovoltaics; 3) to single out optimum structural design of prototype NW solar cells for efficient energy harvesting utilizing an intermediate-band approach and of prototype NW LEDs with a high efficiency. To realize our research objectives, the project is divided into three interconnected work packages (WP): (i) solving material-related issues; (ii) understanding fundamental electronic properties; and (iii) developing the optimum design. The planned research activities include modeling and comprehensive structural, optical, spin resonance and electrical characterization studies, which will be conducted for optimization of growth conditions and structural design.
Author: Irina Buyanova
I denna ansökan föreslås ett projekt inom kemcyklisk förgasning (Chemical-Looping Gasification, CLG) för produktion av biobränsle. CLG är innovativ förgasning som kan ge högre gasutbyte än konventionell förgasning och samtidigt leda till negativa emissioner, alltså avlägsnande av CO2 från atmosfären. Principen bakom CLG liknar indirekt förgasning, med två sammankopplade fluidiserade bäddar, men istället för sand används en syrebärare som bäddmaterial. Detta kan ha betydande fördelar jämfört med normal indirekt förgasning: i) en mer oxiderande miljö i bränslereaktorn samt en aktiv syrebärare reducerar tjärbildning och ökar omvandlingen av kolväten, och ii) kostnad för gasrening minskar, då allt bränsle omvandlas i bränslereaktorn, vilket innebär att avsevärt mindre volym gas behöver renas. Genom att använda restmaterial från stålindustrin som syrebärare får CLG positiva återverkningar inom ett helt annat område, samtidigt som processen görs mer kostnadseffektiv. Chalmers har ett pågående projekt där kemcyklisk förgasning av biomassa utvärderas och utvecklas för produktion av syngas (H2/CO) för vidare syntes till biodrivmedel. Doktoranden Fredrik Hildor har arbetat i projektet och nyligen presenterat sin licentiatavhandling ”Steel converter slag as an oxygen carrier for thermochemical conversion of biomass”. Projektet med finansiering från Energimyndigheten och Merox/SSAB upphör vid detta års slut, vilket gör att det saknas finansiering under sista året (2021) av Hildors doktorandtid. LD-slagg (”steel converter slag”) har genom Hildors studier visat sig vara en mycket lovande syrebärare för CLG. För närvarande utvärderas omvandling av tjäror och nästa steg är att studera effekten av kväve och svavel i bränslet. Vidare kommer även möjlighet till utvinning av vanadin från använd LD-slagg att undersökas eftersom svensk LD-slagg innehåller relativt hög halter vanadin och att det observerats att vanadinen blir mer tillgängligt när LD-slagg används som syrebärare.
Author: Carl Linderholm
Föreliggande projektförslag syftar till ett nytt och effektivt sätt att reducera kväveoxider från förbränning av biobränslen men på sikt all form av förbränning. Kväveoxider utgör ett regionalt och lokalt miljöproblem främst orsakat av förbränningsmotorer men också av fasta bränslen. Framdeles kommer tillåtna emissioner av kväveoxider att sänkas. Biobränslen kan bli en viktig och leveranssäker källa för värmeproduktion i Sverige och EU men med ökat behov av biobränslen kommer även nya och ofta kväverikare biobränslen att användas. Detta nödvändiggör åtgärder för att minska utsläppen. Litteraturen om kväveoxider är stor men inriktad på kolförbränning. Studier och genomförda tester visar dock att kväveoxider kan reduceras kraftigt genom reaktion på biokol. I detta projekt demonstreras reduktion av kväveoxider med biokol vid förbränning i pilotskala i fast bädd och bubblande fluidbädd. Projektet kan leda till ny teknik och design som kraftigt reducerar kväveoxidutsläpp.
Author: Sara Janhäll
Zn ion batteries are attractive owing to the safety, low cost, and high theoretical capacity of Zn metal as anode. Its compatibility with aqueous electrolyte in contrast with Li and Na makes it also beneficial for practical application. However, in the demonstrated Zn ion batteries so far excess amount of Zn such as thick Zn anode was employed which leads the dendritic growth and can artificially improve the performance of battery as any loss of Zn during operation can be compensated by excess Zn reservoirs. Also, usage of thicker Zn anode reduces the specific energy of whole battery system. Herein, we propose to address the problems associated with Zn anode by electroplating thin layer of Zn on cost-effective current collector using water-in-bisalt (WIBS) electrolyte. The WIBS would be based on highly concentrated potassium polyacrylate that will help in the formation of uniform nucleation layer of Zn due to the higher binding energy between acyl group and Zn atoms. This thin uniform electroplated Zn will also solve the problem associated with usage of thick Zn anode. The dendritic growth of Zn anode will be investigated using Zn//Zn cell in WIBS electrolyte. At the end, the electroplated thin layered Zn will combine with cheap biomass lignin to demonstrate cost-effective, safe and sustainability device. We believe that our approach will help to improve the specific energy of whole battery.
Author: Ziyauddin Khan
Idag saknas det verktyg för solcellsparksprojektörer som tar hänsyn till lokala väderförhållanden, och framför allt till prissignalerna från elmarknaden och därmed i förlängningen till balansen mellan produktion och efterfrågan. 21 av 24 solcellsparker installeras rakt mot söder. Trots att solkraften är ett variabelt icke-planerbart energislag, likt vindkraft, kan solkraftens produktionsprofil över tid justeras genom att vid installationen välja olika vinklar och väderstreck (azimuth) på modulerna. Moduler som installeras mot väst eller öst kommer producera mer el på kvällar respektive mornar, och högre vinklar på modulerna innebär att de kommer producera relativt mer på våren och hösten när solen står lägre. Projektet har som huvudsakligt mål att beräkna den optimala lutningen och riktningen för moduler utifrån lokala väderförhållanden i kombination med spotprisvariationerna för olika platser i Norden. För beräkningarna kommer en modell att utvecklas. Beräkningsmodellen skulle kunna leda till en potentiell ökning av lönsamheten i många solcellsparker. En större spridning i både vinklar och riktning (azimuth) skulle också innebära en större fördelning av solkraftsproduktionen över dygnets timmar, men även över säsong, vilket vore en fördel för den svenska kraftbalansen. Modellen ska kunna hantera framtida elprisscenarier där den nordiska elmixen ser annorlunda ut än den historiska för att kunna ge projektörer en möjlighet att ta höjd för kannibaliseringseffekten.
Author: Marie Kofod-Hansen
There is an increasing demand for battery-based energy storage in today’s world. Li-ion batteries have become the major rechargeable battery technology in energy storage systems due to their outstanding performance and stability. However, their relatively high cost and safety issues still need to be addressed. Al-ion batteries are promising candidates for next-generation batteries due to their high cyclability, fast charging ability, and high capacity. The most studied electrolyte in aluminum-ion batteries is ionic liquids. However, promising recent studies have used water-based electrolytes that might provide a low-cost, high- performance alternative with both lower material cost and simpler manufacturing methods. In particular, the use of water-in-salt electrolytes shows a low-cost route with high performance that is environmentally friendly. An exciting result from this study indicate that the water-in-salt is a dual-ion electrolyte – both the large AlCl4 - and the small Al3+ ions are present.
Author: Shahrzad Arshadirastabi
The district heating networks (DHN) constitutes an important component in today’s energy system and are believed to become even more vital in the future, enabling integration of prosumers providing low grade heat and efficient waste recovery, while reducing the use of fossil fuels. Optimizing the lifetime of the systems and prioritizing maintenance efforts correctly is important in terms of security of supply, energy efficiency, economy, resource use and safety. Most traditional DHNs are treated as a “black box”, where many grid operators are unaware of the actual maintenance needs of the DHN. This project comprises the first phase of development of a common platform for predictive maintenance of district heating networks. The idea is based on collaboration between district heating companies to gather data set large enough for machine learning application. The project will result in a proof of concept in close cooperation with seven district heating companies, Öresundskraft, Mölndal energi, Växjö energi, E.ON Energilösningar, Vattenfall, Göteborg energi and Karlstad energi. This project comprises the first phase of development of the platform. This means that the structure will be established and a proof-of-concept will be built. Static data such as GIS- and NIS data, historical data of failures, and information about infrastructure will be used as input. The expected output from the platform is risk of failure and remaining lifetime of DHN segments.
Author: Julia Kuylenstierna
Kemcyklisk förbränning är en ny förbränningsmetod som kan generera ett i princip rent flöde av koldioxid utan någon gasseparation och kan därför dramatiskt sänka kostnaden för koldioxidinfångning. Detta är möjligt genom att förbränningsluft och bränsle aldrig kommer i kontakt med varandra. I stället överförs syret från luften till bränslet genom en syrebärare som cirkulerar mellan två sammankopplade fluidiserade bäddar, luftreaktorn och bränslereaktorn. Syrebäraren utgör bäddmaterialet och luftreaktorn liknar till det yttre en vanlig cirkulerande fluidbäddpanna. Målet med projektet är att visa att det går att med enkla metoder skapa en högeffektiv syrebärare med billiga råvaror. Tidigare försök har visat att gasomvandlingen vid förbränning av biomassa ökar dramatiskt vid användning av kalciummanganat som bäddmaterial. Kalciummanganat, CaMnO3-, har flera egenskaper som gör den mycket lämplig som syrebärare. Vanliga syrebärare reagerar med brännbara gaser och bildar koldioxid och vatten, medan kalciummanganat, när den kommer till bränslereaktorn spontant avger syre i gasform. Brännbara gaser kan då förbrännas av detta syre vilket underlättar omvandlingen i bränslereaktorn. Försök i en pilotanläggning för kemcyklisk förbränning av biomassa, pekar på mängden icke omvandlad brännbar gas kan minskas med en faktor tio med kalciummanganat jämfört med exempelvis manganmalm. Vidare bör kalciummanganat kunna tillverkas av billiga naturliga material, nämligen kalksten och manganmalm.
Author: Anders Lyngfelt
The goal of this project is to develop cost-effective and efficient photovoltaic devices based on abundant, non-toxic materials. Specifically, we aim to explore tin halide vacancy-ordered double perovskites, highly absorbing materials, in which tin has the stable 4+ oxidation state. By optimizing synthesis conditions, application in a suitable nanostructured device structure and by carefully adapting the contact layers, we are aiming for significantly improved solar cell performance of these materials. Ultimately, this project could lead to a new type of efficient, inexpensive and non-toxic solar cell.
Author: Gerrit Boschloo
Ammonia is a renewable carbon-free fuel made from sun, air, and water that could be a promising energy vector for heavy duty engines. However, ammonia thermo-chemical characteristics limit spreading and actual application. A numerical study will be conducted in this project to carry out a detailed investigation of the onset of ignition, flame propagation, emission and engine performance in a heavy-duty engine operating in two advanced combustion engine concepts, with ammonia/hydrogen fuels. This project is trying to find answers to the following questions: (1) Is it possible to combine ammonia/hydrogen fuel and advanced combustion concepts in heavy duty engines? (2) How to solve the ignition issues in CI engines fueled with ammonia? (3) Which injection strategies are the best to achieve a higher thermal efficiency and stable combustion for ammonia/hydrogen fuel? (4) How to reduce the exhaust NOx emissions with a higher ammonia energy account? The project consists of three work packages: Chemical kinetic modeling, CFD model development and validation, and numerical investigation of different engine concepts. Systematically evaluation of the practical application of ammonia/hydrogen fuels in heavy duty engines in the aspects of manageable ignition, stable combustion, emission, engine efficiency and fuel economy will be conducted.
Author: Leilei Xu
Biomass is a desirable asset in a future, fossil free energy system. Yet, biomass use for energy purposes is a contentious subject due to its connection to land use change, biodiversity and food production, as well as because the demand for biomass for non-energy purposes, such as materials to replace plastics, may grow considerably. This research uses a state-of-the-art energy system model to investigate how important biomass availability actually is in order to decrease the cost of a future, renewable energy system. The research is important for policy makers, who have to consider the cost in terms of e.g. decreased biodiversity and recreational value, as well as possible benefits in terms of cost reduction for energy. In addition, the research may impact considerations for industry (e.g. refineries) who need to change their business models in response to the energy transition.
Author: Lina Reichenberg
The pulp mill of today is very efficient with low losses of chemicals and an effective chemical recovery system,. The high degree of closure is positive for the mill economy, water consumption and environmental impact, but also brings negative aspects. In a closed system the Na/S balance and build-up of K and Ci in the mill process streams has to be controlled. The chemical balances are today normally controlled by purging ESP dust (or ESP dust treated to obtain a more concentrated purge) and compensating with make-up chemicals to maintain the Na/S ratio at the desired level. This is costly and leads to the release of salt to the environment.
Author: Ragnar Stare
In this study techniques, setups, and procedures for in-situ (as built, layer by layer) X-ray nondestructive evaluation of metal components 3D printed with powder bed fusion or directed energy deposition have been explored,. Mathematical models have been utilized on order to estimate the applicabiliiy of the proposed techniques. Simple experiments have been conducted in order to verify some, far from all, of the requirements and assumptions. Both the possibility to utilize the built in electron beam in the powder bed fusion electron beam melting machines as the source producing X-rays as well as the option to utilize external X-ray sources for the case of the directed energy deposition processes have been explored. A proposed concept for backscattered X-ray imaging with an X-ray source has been simulated as seems promising for the application of in-situ layer-by-layer detection and depth positioning of small gas pores. A transmission X-ray imaging concept, less explored, has also been proposed.
Author: Erik Lindgren
In this project, the possibilities to use membranes for reuse of water via process integration in a tissue mill was investigated. Water saving is an increasing interest even in the Norden European countries due to the climate change resulting in higher temperatures and longer period of draughty. In 2016 the river supplying the water to the Sofidel mill in Kisa had very low levels of water which could be a threat to the production of paper at the mill. Several process streams from the mill were collected and evaluated with membranes for recirculation in the mill. One possible process integration identified in the project was to purify the outgoing water with membranes and replace some of the fresh water intake. To reach the COD and conductivity numbers required reverse osmosis membranes were used, in combination with pre-treatment of the process water. Pre-treatment utilizing centrifugation or chemicals in combination with a membrane process using reverse osmosis gave promising results. A cost estimation for the size of the required membrane equipment needed was made. In addition to the waste water sample some other process streams were also evaluated, and the results show that membranes could function as kidneys in the process, removing some organic components from the process. The integration and use in the mill of the tested process streams could not be identified.
Author: Sverker Danielsson
The extraction of biomass to produce paper, furniture and energy generates large amounts of forest residues (branches, needles, tops, bark and un-merchantable wood) that are often subjected to controlled burning or are left in large piles, causing a negative environmental impact and risks of pests and fire in warmer countries.Swedish productive forest lands cover 23 Mha from where 85 Mm3 per year of trees are cut, producing a great amount of logging residues (around 20 Mm3/year). This proposal intends to valorize the logging residues into value-added packaging nanocomposites by sequential multicomponent isolation of biopolymer fractions and cellulose nanoparticles. To do that, it is proposed to deconstruct the forest residues into individual molecular components, to then reassemble them into green nanocomposites with functional barrier properties. Cellulose nanocrystals and nanofibrils will be isolated from residual biomass to later be used as reinforcing agents to be applied in hemicellulosic and lignin-based composites. The hemicellulose and lignin polymers will be obtained as side-stream products from the isolation of cellulosic nanoparticles with the challenge to create a sustainable cascade biorefinery procedure. All the designed nanocomposites will be characterized and subjected to different water ageing environments to check their performance, their durability and their applicability as a packaging material. Converting forest residues in novel functional materials trough their fractionation into biopolymers and cellulose nanoparticles will be a sustainable approach that will provide economic and social extra value to the forest residues within the biorefinery concept. Furthermore, the use of this residual biomass as an alternative to fossil resources for the production of green packaging materials will reduce society´s petroleum dependency, stabilizing the CO2 concentrations in the atmosphere and mitigating climate change.
Author: Rosana Moriana-Torró
Att kunna utnyttja cellulosa i nya produkter beror i hög grad på möjligheterna att förändra biomaterialets fysiska form och därigenom dess egenskaper vid processning och i efterföljande tillämpningar. Ett bra exempel på detta är de landvinningar som till dags dato gjorts vid tillverkning och användning av nanocellulosa. Upplösning av cellulosapappersmassa i vattenbaserade lösningsmedelssystem har potential att på ett liknande sätt kunna skalas upp till en hållbar process för tillverkning av material som kan ersätta oljebaserade produkter i framtiden. Nya vetenskapliga rön som pekar på att hydrofob växelverkan och jonisering är minst lika viktiga beakta vid cellulosaupplösning som brytande av vätebindningar, ger andra infallsvinklar och öppnar nya möjligheter även för design av cellulosabaserade material. Genom att behandla cellulosapappersmassan med lut och enkla tillsatser som bland annat urinämne, ser vi stora möjligheter till att kunna skapa storskaliga och hållbara tillverkningsprocesser för helt nya material baserat på cellulosa som kan ersätta plast i olika former i framtiden, men också har möjlighet att skapa unika och mycket smartare biomaterial. Utifrån ovanstående så föreslår vi i detta projekt fördjupade studier om hur cellulosabaserade nanokompositer kan tillverkas och användas för inkapsling av opolära vätskor och gaser som till exempel kan användas inom färg-, livsmedel- och läkemedelsapplikationer, eller som lättviktsfyllmedel i andra kompositmaterial som kan användas för tillverkning av en mängd olika produkter.
Author: Magnus Norgren
The project had mainly focused on the development of sustainable nanocelluloses and their nanocomposites for environmental and energy related applications. The research results indicate that nanocelluloses can be used as raw materials to prepare porous carbon aerogels for CO2 capture and volatile organic compounds (VOC) adsorption, and as flexible templates or substrates to fabricate other functional materials with formation of novel nanocomposites for the uses in electrochemical energy storage, and VOC removal, etc. We believe that the outcomes from this project not only contribute to the fundamental research in nanocelluloses and functional nanomaterials, but also would greatly promote the practical applications of nanocelluloses-based materials.
Author: Chao Xu
We have developed a method for synthesis of water soluble PCN quantum dots • We have shown that PCN quantum dots absorb visible light and that our synthetic procedure produce quantum dots with a low amount of detrimental trap states, also a prerequisite for efficient photocatalysis • We have shown that irradiation of PCN quantum dots results in ultrafast electron transfer from the conduction band of the PCN quantim dots to model catalysts, another prerequisite for efficient photocatalysis • We have developed an experimental setup to test the catalytic properties under various atmospheres • We have been able to show that CO2 to some extent is consumed by our system but have not yet been able to confirm all the products • The project has yielded results so interesting that it will continue also after the funding period of this project is over.
Author: Maria Abrahamsson
Converting sunlight into molecular hydrogen is a promised path for the "green energy" in our future society. To empower Sweden maintaining a competitive edge at the international level, novel metal oxide materials to produce hydrogen fuel worth the investment for further studies. The primary objective of this project is to find out rational design strategies for the photo-modeling. The preliminary results from this on-going Master thesis work are promising and these provide us a solid basis to further investigate the impact of EDL on the photo-electrochemical reactivity at ms-BIVO4 soiled-electrolyte interfaces.
Author: Chao Zhang
Our society is rapidly evolving to abolish its dependence on petroleum and counter the current trends of climate change. Besides fueling the internal combustion engines, petroleum derivatives are used for producing a broad range of petro-chemicals, which are present in all aspects of our everyday lives. A viable alternative to petro-chemicals are oleo-chemicals, produced from lipid derivatives extracted from microbial cell factories, grown on recyclable plant biomass. At Chalmers SysBio we are developing yeast strains that can convert up to 70% of their biomass into lipids, which can then be used as precursors for synthesizing oleo-chemicals. A major bottleneck for scaling up the production of oleo-chemicals for industrial exploitation of microbial cell factories is the difficulty with extracting the products. Very low amounts of oleo-chemicals are secreted into the growth medium by yeast cells, and most of the lipids and their derivatives remain in membrane-bound vacuoles inside the cells. We are proposing to develop a revolutionary solution to this problem, which would make yeast cell factories for production of oleo-chemicals much more attractive. In our recent studies, we have discovered how to control orientation and length of graphene flakes to selectively penetrate cellular membranes. Here we propose to develop magnetic nanoparticles, coated with axially aligned graphene flakes, which would be capable of extracting lipids from cell factories in fermenters. Due to unique properties of graphene coating, the extraction would be performed in real time, at the same time as growth of yeast cells, without interrupting the production process. Our nanoparticles would also be made safe by design, to prevent any harmful effect on humans and the environment. This project builds on the cutting edge graphene technology present at Chalmers, to overcome a major problem for sustainable production of oleo-chemicals.
Author: ivan mijakovic
Based on tests and experiments conducted in 2020 (see our interim report), it was found that the most promising procedure of recovery of REE from apatite-bearing waste is the one using phosphoric acid. Briefly: dissolution in 30% P2O5, solid to liquid ratio = 1 g/10 ml, temperature: 25 °C; followed by precipitation of pyromorphite by the reaction with the solution containing Pb(NO3)2 and NaCl at pH between 2 and 3 maintained with 1M NaOH.
Author: Jaroslaw Majka
Nano-porous ultra-thin membranes based on 2-dimensional (2D) materials, such as graphene, represent an ultimate nano-sieve for chemical separation with an efficiency and selectivity several orders of magnitude higher than current technologies. Currently, the fabrication methods for the nanopore graphene show poor control over the morphology of the resulting pores, and lack scalability for large scale production, thus so far hampering this separation technology from practical applications. The achievable pore sizes of current methods are also at best tens of nanometer. In this project, I will demonstrate a fabrication approach that is deterministic, highly scalable for mass production, and can achieve a pore size of <10 nm. To achieve these goals, I will employ a complementary approach, i.e. combining the ion irradiation with a suspended nano-template produced by electron beam lithography (EBL). The energetic ions pass through the nano-template to create the pattern on the graphene membrane. EBL can provide excellent pore size and distribution, but is not scalable. Broad-beam ion irradiation is very deterministic, and scalable. Combining the two methods will give the best of two worlds. Scientifically, we will advance the understanding on: i. Interaction between energetic ions and 2D membranes. ii. Defects creation, annihilation, and clustering under ion irradiation and thermal treatment. iii. Gaseous transport through the nano-pores of infinitesimal thickness.
Author: Tuan Tran
Plant natural products, such as flavonoids and alkaloids, are widely used as food and feed additives, dietary supplements, nutraceuticals, and pharmaceutical drugs. However, isolation of valuable plan secondary metabolites from native sources is frequently limited by low abundance and environenmtal variation while total chemical synthesis of what are often complex structures is typically commerically infeasible. Reconstruction of biosynthetic pathway in heterologous microorganisms offers significant promise for a scalable means to provide sufficient quantities of a desired products while using inexpensive renewable resources. The aromatic amino acid (AAA) biosynthesis pathway is one of the core metabolic pathways that lead to the production of many of these specialty compounds. AAAs act as the primary substrates for the biosynthesis of a wide range of commercially relevant natural products, such as flavonoids and alkaloids, which collectively represent a multi-billion-dollar market value. Therefore, the objective of this project is to develop the yeast Saccharomyces cerevisae for efficient provision of aromatic amino acids for production of alkaloids and flavonoids from renewable feedstocks such as glucose. Here we rewire the central carbon metabolism in yeast such that it efficiently provides E4P and channels more flux through the AAA biosynthesis pathway. In doing so, we can substantially increase the production of AAAs and their derivatives. The contribution of AAA pools toward potential downstream use is evaluated by the formation of para-coumaric acis (also called p-hydroxycinnamic acid, p-HCA). Furthermore, the developed platform cell factories have been evaluated for production of resveratrol, an industrially interesting aromatic chemicals.
Author: Yun Chen
I. The first aim of the present project was to perform multi-scale theoretical modelling of a composite paper made of cellulose and conducting polymer PEDOT to answer fundamental questions concerning its morphology and ion diffusion. To address this aim we started with the investigation of the morphology of the conductive polymer PEDOT. One of the main features of PEDOT:PSS morphology is its twophase granular structure with PEDOTrich and PSS-rich regions. Current experimental literature provides rather vague, and in many cases conflicting conclusions concerning precise nature of PEDOT- and PSS-rich domains, as well as their chemical composition and structure. Another question of the great interest, which has never been addressed theoretically is PEDOT:PSS water intake, swelling, and ion intake in cyclic voltammetry conditions. In the present study we perform the MD simulations in the MARTINI coarse grained model to answer the above questions
Author: Yolanda Hedberg
Brick masonry is a construction material that has been widely used in Sweden in the XIX century, up to the first half of the XX century. As a result, masonry represents today a good portion of the Swedish built environment and is present in sensible targets such as monuments, churches, train stations and other strategically important buildings, which were not engineered to sustain the loads exerted by such extreme loading conditions. Assessing precisely the response and the level of damage reached by masonry during impacts and blasts is nonetheless very challenging. The present study investigates these intricated research questions by performing experimental tests to better characterize the response of URM walls against impacts. The walls were built by ‘red’ clay bricks and hydraulic lime-based mortar, a masonry typology that is found in many historic buildings in Sweden and, more generally, Northern Europe. The walls were tested at the laboratory of Applied Mechanics at RISE Research institutes of Sweden (Borås, Sweden). They were place into a test rig specifically designed for that purpose and subjected to dropping mass pendulum tests, in which they were repeatedly hit until the formation of heavily visible damage. The tests were instrumented with both hard-wired and optical measurements, these latter used along with high-speed (HS) cameras and Digital Image Correlation (DIC), to face the difficulty of observing cracks and determine strain measures at the time of the impact.
Author: Michele Godio
Detta projekt fokuserar på att kartlägga och analysera arbetsprocesser avseende säkerhet, risk och hållbarhet inom skogsindustrin. Detta är viktigt inte minst med tanke på höga olyckstal inom industrin. Tidigare forskning visar att chefs- och ledarskapsbeteenden påverkar säkerhet och välmående oavsett typ av industri och ledares aktivitet i säkerhetsfrågor visar positiva resultat vad gäller antalet tillbud. Arbete i riskfyllda verksamheter kräver också att ledare agerar proaktivt vad gäller riskhantering. Projektet genomförs i nära samarbete med de tre företagen Ahlström-Munksjö Aspa bruk, Södra Timber Unnefors, samt Stora Enso Hyltebruk. Syftet med detta projekt är att analysera strategiskt och operativt arbete hos chefer och ledare avseende säkerhetskultur där proaktivitet samt säkerhets- och riskbeteenden har en central roll. Datainsamlingen för respektive företag består av tre delar; (i) dokumentstudier avseende säkerhet och hållbarhet, (ii) intervjuer med ansvariga för säkerhets- och hållbarhetsfrågor samt (iii) skuggning av sammanlagt 40 chefer. Projektets resultat förväntas att visa hur arbetsprocesser avseende säkerhet och hållbarhet ser ut inom skogsindustrin. Genom att analysera omfattningen av säkerhetsarbete tillsammans med beteenden av proaktiv och reaktiv karaktär förväntas säkerhetskulturen att stärkas inom organisationerna. Projektets resultat kommer också att bidra till forskning kring aktiv samverkan mellan arbetsmarknadens parter för att skapa en hållbar arbetsmiljö och säkerhetskultur i organisationer och på hur ledarskap och medarbetarskap kan utvecklas för att skapa en större säkerhet inom skogsindustrin. Resultaten kommer att spridas till andra företag inom skogsnäringen med fokus på goda exempel.
Author: Pia Ulvenblad
The interest in burning different fuels in lime kilns has increased as mills want to replace fossil oil with renewable fuels. Since all fuels have different combustion characteristics they will affect the process conditions. Then it is important to be able to study how various operating conditions affect the lime quality. In this study a threedimensional CFD model is coupled with the traditional MesaSim model to get a good model for the whole lime kiln. MesaSim is a fast and established method and is used to model the lime bed as which is used as input to the CFD model. The CFD model gives a better picture of the combustion and gas flow in the kiln and is used to calculate the flame length which is then used as input to MesaSim. The results show that the method works well for oil as fuel, and the results from both models agree well.
Author: Fredrik Jareman
The goal of this project has been to further develop the Genomic Allergen Rapid Detection (GARD) test system for the prediction of protein allergens able to sensitize the respiratory tract using the established cell model MUTZ-3. We further more aimed to test a primary cell model of the bronchial epithelium, and to challenge both cell models with representative enzymes used in the detergent industry provided by Novozyme A/B, Denmark. Different methods, such as whole-genome analysis and several bioinformatical tools were used in order to develop a predicitive biomarker signature and to investigate involved mechanisms in sensitization caused by this type of substances more in detail.
Author: Kathrin Zeller
In the project we have prepared a variety of novel organoselenium (nitro-, azo- and amino substituted Ebselen derivatives) and organotellurium tellurobistocopherols and 2-aryltellurophenols substituted in the aryltelluro or phenolic part of the molecule) antioxidants. The novel compounds were found to act as excellent quenchers of peroxyl radicals. Furthermore, in the presence of suitable co-antioxidants, they could be continuously regenerated and act in a catalytic fashion. Some of them (Ebselens) were also found to efficiently catalyze the reduction of hydrogen peroxide in the presence of a thiol co-antioxidant. Mechanisms for the reduction of peroxyl radicals and hydrogen peroxide were proposed in the light of calculated O-H bond dissociation energies, deuterium labelling experiments, studies of the consumption of co-antioxidant and 77Se NMR experiments. The global market for antioxidants is enormous. Unfortunately, the large majority of these compounds act only on a stoichiometric basis. Thus, each molecule of a phenol or aromatic amine can only quench two peroxyl radicals before it is all consumed and gone. It would be much better if one could improve the chain-breaking capacity of the antioxidant and then regenerate it with some cheap, non-toxic co-antioxidant and make it perform in a catalytic fashion. Then one could cut down on the use of eco-unfriendly aromatic amines and phenols that continuously leak out in our environment today. Such catalytic antioxidants - properly described as “sustainable” and “green” - have been prepared and studied in the present project.
Author: Lars Engman
Risk assessment of polluted soil in relation to levels of polycyclic aromatic hydrocarbons (PAHs) is today based on the measurement of 16 PAHs. It is however very well known that polluted soils contain a complex mixture of related compounds, including oxygenerated (oxy-PAH), nitrated (N-PAC) and alkylated (me-PAHs) PAHs, which might be as potent toxicants as the PAHs, but are still not included in monitoring or risk assessment strategies. We show here that these compounds were found at relatively high levels in parks in Stockholms city and that pyrogenic processes were the main source of pollution. Moreover, a strong correlation was observed between the levels of these compounds and levels of PAHs. Assuming that no interaction occur (so called mixture effects), this implies that the measurements of the 16 PAHs is enough to monitor the risk to human health, However, we show here for the first time, that oxy-PAHs and PAHs do interact, leading to unpredictable mixture effects in vitro and in vivo. this was shown for endpoints and markers for cancer potency/risk as well as for developmental effects on the cardiovascular system. We conclude that monitoring of only the PAHs in polluted soil is not enough to limit the risk of detrimental human health effects and due to the significant presence and interaction with related compounds such as oxy-PAHs, these should be included in strategies for environmental monitoring and human health risk assessment.
Author: Kristian Dreij
Waste is generated along the production of products (i.e. during extracting resources, processing and production) and also when unwanted products are discarded. Although most consumers are aware of the amount of waste they dispose of, relatively few are aware of the waste generated in the course of producing the goods that they consume. This project builds upon previous work to advance a methodological approach for quantification and communication of the pre-consumer waste footprint of products. The purpose is to address the main criticism that the work received in a peer-review process: how to deal with the subjectivity of waste, are the indicator appropriated for communicating results, what is the usefulness of a product waste footprint
Author: Åsa Moberg
In this initiative we made considerable progress in developing a mobile sensor platform to detect environmental pathogens in water samples using cell phones. We adapted and improved earlier designs of unidirectional valves, enabling sample and reagent handling within the unibody device. The new valve design, which consists of an introduced disruption of the adhesiveness of the sealing film, has considerable advantages on assembly efficiency and by eliminating undesired death volume. The design allows reliable volume metering, which is a critical operation for any analytical procedure, including sample preparation steps for pathogen lysis. We could show that our synthetic riboswitches have the potential to detect nucleotide sequences, optimization, however is need to elimate "leakage" of the reporter protein. Achievable limit of detection with the present concept was calculated to be below clinical requirements yet, and additional amplification steps have to be integrated. Such solutions are available and could be smoothly integrated in the present platform. The developed platform has great potential as a pathogen sensor outside the usual lab environment and the promising preliminary results.
Author: Anke Suska
The aim of this project was to develop a novel technique to recover toxic heavy metals from contaminated solutions. The technique is based on electrochemical alloy formation, where toxic heavy metal atoms or ions are incorporated in a noble metal placed on the cathode in an electrochemical cell. In this project, focus has been on recovery of mercury. Platinum was used to recover mercury from aqueous solutions via electrochemical formation of PtHg4. The overall process is schematized in Figure 1, and comprises two steps: uptake of mercury from solution (alloy formation), and regeneration of the electrode for further re-use (decomposition of the alloy to regenerate platinum, and recover mercury). The technology has potential applications in decontamination of, e.g. industrial and natural waters containing toxic metals. The method is a reagent-free alternative to chemical processing, which requires the use and/or addition of chemical compounds
Author: Björn Wickman
Waters in the northern hemisphere are getting browner because of increased runoff of Dissolved Organic Carbon (DOC). Exact reasons for this increase are still debated, but the source of the DOC is determined to be terrestrial. Soils play an important role in the export of DOC from land to inland waters, as they can both act as a source of DOC through leaching, or as a (temporary) sink through a process called DOC sorption - which binds DOC to soil particles. Here we have found that DOC leaching in the boreal forest soils consists only of fairly recent captured carbon leached mainly from the top soils. However, mineral subsoils still maintain the ability to leach DOC - as shown by our disruptive leaching experiments. While the B horizon consists of slightly older carbon compared to the topsoil, the horizon separating the top and B horizon has an age of roughly 1000 years old. Even more surprisingly the amount of E leaching is equal to the amount of leached DOC from the B horizon. In both cases, however, it is not the old carbon that is leached, but rather the relative new carbon that can be extracted. This means that in future climate scenarios there might be less capture of DOC by soils if leaching increases as a result of increased precipitation, but it is unlikely that old carbon will be released unle
Author: Geert Hensgens
Expected outcome – as specified in the grant application In this project we set out to understand an important phenomenon that we had observed in our previous work. When using the catalyst Cu/SAPO-34, a common catalyst used to reduce NOx in vehicle exhausts, we observed that the catalyst deactivated when water was present in the atmosphere below 100 °C. These conditions are encountered frequently in vehicles during start up, when the engine temperature is low, so this catalyst inactivation is a major problem for the car industry aiming to comply with the current legislation on environmental protection. Therefore, our objective in this project was to understand which part of this complex catalyst is responsible for deactivation, and clarify as far as possible the mechanisms of its deactivation by water. Further, provided that we could demonstrate some mechanistic insight, our ambition was to identify parameters which can be tuned to improve catalyst stability, and propose means to synthesise a more stable version of the catalyst Cu/SAPO-34.
Author: Kirsten Leistner
Ozone treatment of activated sludge to reduce foaming problems and filament-forming microorganisms has been used in periods at Klagshamn wastewater treatment plant for several years and proved effective for this purpose. Because ozone is energy-intensive, other effects of ozone, such as increased biogas production and reduction of micropollutants, could contribute to higher cost-effectiveness. However, in this study no such effects could be seen. The methane potential for untreated sludge and ozone treated sludge was as high regardless of the dose of ozone tested. The organic micropollutants were not affected by ozone treatment, but several of them were significantly reduced (25-95%) by the sludge being anaerobically digested. A microbial characterization was performed to study the effect from ozone on the microbial sludge community. It was seen that the microbial community was affected by anaerobic digestion, but not by the ozone treatment.
Author: Åsa Davidsson
Nanomaterials (NMs) are defined as materials with a size less than 100 nm in one or more dimensions. These materials can, due to e.g. their small size, give rise to new and useful phenomena and material properties. More and more NMs are developed and used in an increasing number of consumer products. In this work two consumer products (mouth spray, skin cream) containing silver nanoparticles (Ag NPs) were tested for in scenarios for the user-phase to investigate NP size in solution as well as the release of silver from the NPs in the consumer products. These results were compared with pristine Ag NPs both with and without a capping agent. Also, more general trends of dissolution of Ag NPs were investigated in terms of its dependence on surface chemistry and capping agents. The results of this report show that Ag NPs were released from the skin cream over time and that the NP concentration increasing over time. At the same time these NPs are dissolving in the artificial sweat. The Ag NPs in mouth spray agglomerated and dissolved continuously in artificial saliva. The faster dissolution of the Ag NPs in the consumer products compared with the pristine Ag NPs was mainly related to the smaller primary size of these NPs In all, the results show that the studied consumer products release NPs during the user phase and that these retain their NP properties at least during the first 24 h in solution. Dissolution is on-going for the NPs during this user-phase and should be considered in risk assessments since the potentially toxic effects of ionic silver species
Author: Jonas Hedberg
Biopolymers are presently produced in small volumes. However, in future, volumes ,may increase substantially. This may lead to contamination. This project studies what happens when bioplastics contaminate conventional plastic. Three conventional plastics were selected for this study: polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET). In order to simulate contamination, two bioploymers, either polyhydroxyalkanoate (PHA) or thermoplastic starch (TPC) were blended in to the conventional polymers. A relatively large amount of tests have been conducted and tests show that PE is relatively robust against contamination, while polypropylene (PP) is somewhat more sensitive and polyethylene terephthalate (PET) can be quite sensitive towards contamination.
Author: Martin Bohlén
In order to protect water resource, wastewater has to be adequately treated and organic micropollutants (OMPs) removed. In the present project, laccase activity of mushroom substrate colonized by Pleurotus ostreatus, the commonly produced oyster mushroom, was studied. Colonized mushroom substrate, based on sawdust of alder, was used to treat water contaminated with the OMPs diclofenac,bicalutamide, lamotrigine and metformin in environmentally relevant concentrations (µg/L). The laccase activity of the colonized mushrooms substrate was observed to be highest immediately before initiation of fruiting body formation with an activity of 0.8 U/g of mushroom substrate (wet weight). Suspensions of mushrooms substrate with a laccase activity of approximately 50 U/L, was used for treatment and significant removal was observed for all OMPs. Highest removal was observed for diclofenac with a 90% removal compared to the control with uncolonized mushrooms substrate. For bicalutamide, lamotrigine and metformin relative removal of 43%, 73% and 59% compared to the controls were observed, respectively. The present project clearly demonstrates the potential of using mushroom substrate colonized by P. ostreatus for removal of OMPs in wastewater.
Author: Malin Hultberg
Access to clean water is one of the greatest challenges for the society. It has been estimated that there are about 1.9 billion people on earth, who, at least occasionally, consume fecally contaminated water. Thus, there is a need for cost-efficient water treatment methods that do not rely on heat, chemicals, or radiation, because these methods only inactivate viruses and bacteria and do not physically remove them from water. Filtration is a robust method to remove all types of pathogens from water and provide water of highest and invariable quality. Unfortunately, the price of the filters is still inhibitive. In this project, we would like to expand our research at Uppsala University on developing the world's first filter paper that can remove all types of viruses and larger microorganisms from water as easily as brewing coffee. In particular, here we would like to develop new methods for controlling the nanopore size in the filter paper by using disruptive approaches. As the size of the pores is decreased, it becomes technologically difficult to control the pore size of the filter. This is especially true for filters with controlled nanopore size. The produced filter should feature high worst-case model particle removal efficiency, high flow rate, low fouling, and be cost-efficient. Combining all these properties in one filter is a great challenge for researchers. Our goal is to produce a filter paper that combines all these desirable properties for water purification applications.
Author: Albert Mihranyan
Trafiken har pekats ut som en av de viktigaste källorna för diffus spridning av långlivade organiska miljögifter i stadsområden. Studier visar att tusentals olika organiska miljögifter emitteras i trafikmiljöer och de största källorna är fordonens avgaser, däckslitage, bromsbelägg, motoroljor och nötning av asfalt. De organiska miljögifterna kan förekomma både i partikulär och löst form, men också som nanopartiklar bundna till kolloider, plaster eller som emulsioner. Vid regn transporteras miljögifterna från vägarnas ytor och vidare via dagvattnet till vattendrag, sjöar och hav. Många organiska föroreningar har en rad olika skadliga effekter och kan t ex ackumuleras i näringskedjor och ger därmed störst skada på de djur (inklusive människan) som står högst upp i näringskedjan. I detta projekt utförs forskning på olika tekniker för att förhindra spridning av organiska miljögifter till vägdagvatten, med specifikt fokus på gatusopning och fordonstvätt. Det övergripande syftet är att undersöka hur hållbart och effektiv gatusopning och biltvätt är för att förhindra spridning av organiska föroreningar från trafiken. Den vetenskapliga utmaningen är att undersöka och förklara i vilka former de organiska miljögifterna förekommer i vatten och fasta faser. I två fallstudieområden utförs provtagning och kemisk analys av partikelfraktionerna i vägdamm och avrinning från vägytor före och efter gatusopning. Dessutom kommer olika typer av fordon och olika delar på fordonen (däck, hjulhus, kaross ovan- och undersida) att tvättas för att simulera olika typer av avrinning (regn, intensivt regn, biltvätt) och tvättvattnet analyseras med avseende på totala, lösta och kolloidala fraktioner av organiska miljögifter. I projektet utreds även, med hjälp av multikriterieanalys, hur effektivt och hållbart gatusopning och fordonstvätt är jämfört med andra åtgärder för att förhindra spridning av organiska miljögifter i vattenmiljöer.
Author: Karin Björklund
Sodapannan är en central funktion på ett sulfatmassabruk i sin funktion som återvinningsställe för kokkemikalier och försörjare av ånga. En sodapanna har, beroende på storlek, 2-10 stycken vattenkylda löprännor, via vilka smältan från eldstaden rinner ut och ner i sodalösaren, vilken är fylld med svaglut där smältan löses upp och bildar grönlut. För att förbättra inblandningen och upplösningen av smältan och minskning av smällar (buller) splittras den i mindre droppar med mellantrycksånga. Ojämna smältaflöden, eller ”smältarusningar”, är idag ett stort problem för flera svenska massabruk. Smältarusningarna orsakas i huvudsak av ojämnheter i driften, och kan vara svåra att förutspå p.g.a. det komplexa samspel av processvariabler som spelar in. Ur ett arbetsmiljöperspektiv innebär dessa en påtaglig risk när stora mängder smälta under kort tid rinner över löprännor med begränsad kapacitet- både i form av stänk på lösarplan och smällar i lösartanken. Orsakerna till smältarusningar är väldigt komplexa och beror ofta på flera bakomliggande faktorer. Studier och erfarenheter säger att det viktigaste för att minimera dessa är att säkerställa att man har en bra förbränning i pannan, med korrekt lutinsprutning som når bädden, och bra omblandning av förbränningsluften. Tanken med detta projekt är att undersöka ett flertal processvariabler (framförallt med avseende på luftsystem och bränsle) i detalj, och utvärdera hur dessa står i relation till perioder med höga smältaflöden genom statistisk analys av driftdata insamlad under en längre period. Exempel på variabler som bör studeras är total förbränningsluft tillförd pannan, luftfördelning mellan de olika nivåerna, temperatur och torrhalt på luten, sulfiditet i grön- och vitlut, input från bäddkamera, tillsatsbränslen o.s.v. Genom regressions- och flervariabelanalys fastställs statistiskt signifikanta samband och flerfaktorsamspel mellan processvariabler och problematiska perioder där smältaflödena bedöms har varit höga.
Author: Hans Holm
Tryckkärl som sodapannor ska provtryckas efter ingrepp i tryckkärlet. Provtryckningen ska ske med provtryck som påtagligt överstiger pannans normala drifttryck. Provtryckning är i de flesta fall ett nödvändigt sätt att säkerställa att det inte finns svagheter efter de ingrepp som gjorts. För vissa typer av ingrepp kan dock provtryckningen med höga provtryck inte förväntas ge den kontroll som önskas. Att utsätta sodapannan för höga provtryck i onödan kan vara en risk i sig och förkorta pannans livslängd. Annan typ av provning ska då genomföras i stället för provtryckningen med höga provtryck. Projektets tes är att det efter vissa typer av ingrepp inte är relevant att provtrycka pannan med höga provtryck för att avslöja en felaktig svetsning – även om det finns en felaktighet är det andra delar av tuben som kommer att ge vika först. Sprängförsöket syftar till att undersöka denna tes genom försök där rundsvetsar med svetsfel (rotfel och martensitiskt) utsätts för så höga tryck att den tub de sitter på brister. Den brustna tuben undersöks och slutsatser dras.
Author: Hans Holm
An accurate prediction of the ice chunk trajectories in the case of ice throw/fall from wind turbines is crucial for the correct estimate of the associated risks. A new tool for ice throw modeling is being developed at the Div. of Fluid Mechanics, Lund University, where the aim is to allow flexibility for the users to choose faster, less accurate or more advanced but computationally more demanding models for different aspects of the ice trajectory predictions. The goal of this project was to evaluate the validity of some common assumptions found in the literature, validate some of the already implemented modules, implement new features and evaluate the influence of certain physical (e.g. Reynolds number, details of the wind velocity field) or numerical (e.g. turbulence modeling, grid resolution) parameters on the predicted impact area.
Author: Robert Szasz
Most environmental researchers prefer extracting samples from water resources at different depths and/or locations for their subsequent analysis in centralized units. Many intermediate steps, from the sampling to the analysis process are involved; and the key question that arises is: how reliable is such extracted chemical information in the environmental context? Accordingly, the objective of this project is to develop new sustainable methodologies – relying primarily on electrochemical principles – for in situ environmental monitoring of trace metals (i.e., Cd, Pb, Zn, Cu, Ag, As and Se) in water systems (lakes and seas) mainly using thin layer polymeric receptor-based membranes interrogated with controlled potential or current protocols. Besides, this present project is aligned to the “Environmental Pollutants” research Swedish strategy, and the potential societal value consists of providing reliable chemical information about trace metal pollutant levels in water ecosystems to anyone, anywhere and anytime. This type of evidence does not have precedent so far, and therefore we expect that a remote sensing platform for monitoring pollutants in lakes and seas will not only be used as strategic alarms to identify contaminations, toxic spills that may damage drinking water reservoirs, soils, climate, etc. but also for understanding and/or discovering new biogeochemical processes that involve trace metal species.
Author: Gaston Crespo
The first aim of the present project was to perform multi-scale theoretical modelling of a composite paper made of cellulose and conducting polymer PEDOT to answer fundamental questions concerning its morphology and ion diffusion. To address this aim we started with the investigation of the morphology of the conductive polymer PEDOT. One of the main features of PEDOT:PSS morphology is its twophase granular structure with PEDOTrich and PSS-rich regions. Current experimental literature provides rather vague, and in many cases conflicting conclusions concerning precise nature of PEDOT- and PSS-rich domains, as well as their chemical composition and structure. Another question of the great interest, which has never been addressed theoretically is PEDOT:PSS water intake, swelling, and ion intake in cyclic voltammetry conditions. In the present study we perform the MD simulations in the MARTINI coarse grained model to answer the above questions.
Author: Igor Zozoulenko
The reduction of nitrogen oxides on biochar is studied by letting 5 l/min of argon with 300 ppm NO – here representing nitrogen oxides – pass a bed of biochar. The temperature of the bed is raised from 350 to 850 °C, and the concentration of NO is measured downstream of the bed. Varied parameters are a) pyrolysis temperature, which is the temperature at which the biochar was produced, b) the content of potassium, calcium and iron, and c) the process by which the biochar was produced. The most important parameter for the reduction of nitrogen oxides is the bed temperature. The reduction is 25 % already at 350 °C but it increases to over 90 and in some cases 100 % at 850 °C. The pyrolysis temperature has limited effect on the reduction, but lower pyrolysis temperature gives clearly higher reduction of nitrogen oxides. Also, the concentration of metal ions has a limited but clear effect. Potassium has a negative effect whereas calcium and iron have positive effects on the nitrogen oxide reduction. The process by which the biochar was formed also has a limited effect on the reduction, but flame combustion and steam activation produce more efficient biochars than pyrolysis in inert atmosphere. In summary, the efficiency of the biochar to reduce nitrogen oxides can be affected by the pyrolysis temperature, metal ion concentration, and production process, but the most important parameter is the reduction temperature. The reduction is so efficient that there is a great potential to adjust temperature and biochar bed height to obtain a given reduction.
Author: Sara Janhäll
To improve the performance of biological wastewater treatment- and resource recovery processes, bioaugmentation is an interesting approach. Bioaugmentation can involve adding specific microorganisms into a microbial community (MC) to enhance the capacity of the MC for transforming specific contaminants or produce specific products. In this project, we report using Gram-positive bacterium, Bacillus subtilis for bio-augmentation of nitrogen removal and electrofermentation processes.
Author: Shadi Rahimi
Soils act as a major sink for atmospheric carbon (C) and, correctly managed, can help counterbalance the excessive CO2 emissions. Organic C in soils can be physically stabilized and ‘hidden’ from its decomposers within soil aggregates and it is thought that soil fungi play a decisive role in “gluing together” and redistributing soil mineral particles and existing organic matter to form them. In this project we show that synchrotron X-ray radiation based techniques aid in disentangling nano- to macro- scale processes responsible for formation of organo-mineral interfaces and subsequent formation of soil aggregates. Specifically, STXMNEXAFS images allow direct observations of fungal exudate depositions on minerals. Interacting with the mineral surface, these depositions can, for instance, reduce iron in goethite, which changes its properties, including solubility. In the second part of the project we show that nitrogen rich organic matter in soil (here represented by litter of maze) generally facilitate formation of large macroaggregates in soils, with little influence from microbes. We also show that mineral agglomerations associated with this type of organic matter constitute larger fragments within soil microaggregates – a result that suggest bacterial influence on these formations. This points to the complexity of the many processes that govern soil aggregation. Although further research is required to deepen the understanding of these processes, the results of this project provide insights to nanoscale processes of fungal exudation and their role in the formation of organo-mineral interfaces as well as subsequent soil aggregation
Author: Milda Pucetaite
Forests are a key component of the Swedish strategy to reach the goals of a fossil-free economy and Agenda 2030. The accurate prediction of forest growth is therefore of high importance for a sustainable forest industry as well as for strategic environmental and economic policies. Empirical models have a long tradition in forestry, but more recently process-based models have gained more and more interest and were adapted to the use in forest plantations world-wide. Process-based forest growth models have the advantage that they estimate carbon uptake through well-established physiological processes and their responses to the environment, and therefore are more flexible in changing climate conditions. However, they implement certain generalisations that result in accumulative inaccuracies over time. The aim of this project is to create a forest growth model with high predictive accuracy and design a tool to facilitate strategic planning by political decision makers and stakeholders of the forestry industry. We will reach this goal by combining a traditional forest growth model (3-PG) with a dynamic photosynthesis model. This project will be a significant step towards integrating the latest scientific developments in plant physiology and climate research and employ them in the service of strategic and sustainable forest management. Thereby this project will contribute to the achievement of goal #15 of Agenda 2030 in Sweden.
Author: Zsofia Reka Stangl
Enligt FN saknar över två miljarder människor direkt tillgång till rent och säkert dricksvatten, vilket finns beskrivet i Sustainable Development Goal (SDG) 6. Därtill är det inte möjligt att helt tillfredsställande avlägsna hormonstörande substanser som perfluorerade kolväten, läkemedelsrester och mikroplastpartiklar från dricksvatten och avloppsvatten som därför når haven (SDG 14). I föreslaget projektet kommer en helt ny typ av filter att utvecklas som har potentialen att kraftigt minska energiåtgången vid vattenrening och möjligheten att avsalta havsvatten för hållbar dricksvattenproduktion. Tanken är att använda naturens egna sätt att energieffektivt transportera vatten över cellmembran. Denna biologiska transport sker genom protein, aquaporiner, vilka endast låter vatten passera. Sådana aquaporiner kommer att framställas genom att de överuttrycks i jästceller vars membran sedan stabiliseras med kiseloxid. De erhållna kiselstabiliserade membranen utgör den aktiva delen av det nya filtret vilket möjliggör att energianvändningen reduceras till endast 1% jämfört med dagens omvänd osmos-membran, samtidigt som det uppvisar väsentligt högre vattenselektivitet. Projektet som löper under två år fokuserar på den nya tillverkningsprocessen och innehåller avancerad karaktärisering av de ingående komponenterna samt tillämpade vattenreningsutvärderingar. Utförandet kommer att ske som ett nära samarbete mellan Göteborgs universitet och Chalmers samt i samverkan med Aquammodate AB.
Author: Martin Andersson